OOSD2000lect01.doc

Object Oriented Software Design

Lecturer
David Clark

Office / Phone
11C48 / (6201) 2393

email
davidc@ise.canberra.edu.au

Aim of the unit

Introduction to the Object oriented paradigm (design / implementation). The emphasis will be on the construction of quality software using the OO paradigm. By this we mean software that is

Correct
Exactly performs its tasks, according to specification

Robust
Function even in abnormal conditions

Extendible
Can be adapted to change in specifications

Reusable
Components can be reused in new applications

(see OOSC part 1)

OOSD: Application oriented subject

OO analysis, design, implementation

Programming skills

Project management

Team work

Software Engineering

in context of constructing a small system

Lecturer
Point of Sale Terminal
lectures

Students
Bus Tours
tutorials
assignment

Prerequisites

Software Technology 2 + System Software

Computer Engineering 2

Class Contact

Two lectures, each 1 ½ - 2 hours

8:30 Mon, 4:40 Wed

One tutorial + lab, 2 hours

Teams

Teams of 3

Must be within a tutorial

Will be determined in first tutorial

Tutorials

Start in week 2

Work in teams in tutorial

Attendance is compulsory

Tutorial allocation

If you are not allocated to a tutorial, enter your preference(s) on the sheet.

Tutorials will be sorted out this week.

Assessment

2 assignments (teams), 1 report (individual), final exam.

Each piece of assessment is given a grade.

All members of team get the same grade for assignments.

Individual grades for report and final exam.

Necessary to pass all 4 items of assessment.

Provided grade >= Pass for all pieces of assessment, grade for OOSD will be average grade of assignments, report and final exam.

Language

Eiffel, environment Visual Eiffel

Books

Applying UML and Patterns, by Craig Larman

we will be following this closely.

Other books

OO analysis

UML Distilled, Fowler & Scott

Seamless OO software architecture,

Walden, Nerson

OO Design

OO Software Construction, Meyer

Design Patterns,

Gamma, Helm Johnson & Vlissides

Language books (as required)

Eiffel, the Language (in library)

Web page

http://beth.canberra.edu.au/u4604/

Languages:

Logic:

Prolog

Functional:
Lisp and variations (Miranda, scheme)

Procedural:
Ada, Pascal, C, Cobol, Basic, Fortran

Object-oriented:
Smalltalk, Eiffel, CLOS, LOOPS, Java

Mixed OO and procedural:

C++, Objective C, Objective Pascal, Ada95

Eiffel

pure, simple language

good software engineering - eg assertions

supportive environment

"pushes you in the right direction"

"Eiffel is the most carefully engineered object oriented programming language. It adds a number of capabilities beyond other languages and yet still uses a syntax familiar to conventional language programmer" (Coad) (OOD p110)
consider the following (computing) problems:

1.
Find the average of some numbers.

2.
Simulate a bank for a day,
or file update program

3.
Create an application to assist in designing crossword puzzles.

4.
Create a spreadsheet.

As we go down the list, the complexity of the problem increases.

It is coping with increasing complexity that is our central problem, or rather the production of quality software in increasingly complex applications.

The software industry, as indeed most human activity, has found that a separation of concerns is an effective way of dealing with complexity.

Dijkstra: "I have a small mind and can only comprehend one thing at a time".

Gries: "When faced with any large task, it is usually best to put aside some of its aspects for a moment and concentrate on others".

In the functional approach, what is focused upon is the subtasks.

Typical program using functional approach

Simulate a 1-teller bank for a day, collecting statistics

Watch for

Who are the actors? (what are the components?)

Who is in charge?

What happens to the data?

initialise

(Event list, Teller, Cust Q, Stats)

while Event list not empty

get next event (Event list, Event)

if Event is an arrival

process arrival

(Event, Cust Q, Teller, Stats)

else if Event is a departure

process departure

(Event, Cust Q, Teller, Stats)

endif
end while
write final report (Stats)

Programs using functional approach

Emphasis is on tasks.

There is a main control module which controls everything.

Data is passed from module to module.

It leads to systems that are very difficult to maintain when the requirements change - e.g. in the bank simulation, allow customers to get fed up waiting and leave without being served.

Functional approach does not foster reuse

Functional approach does not foster extensibility

object oriented paradigm

World is seen as a set of interacting objects.

Software system made up as a set of interacting objects.
Objects interact by sending each other messages.

Internal details of objects are hidden.
Only the public (exported) behaviour of a module is visible.

Object

Defined by how it behaves.

Two types of behaviour, commands and queries.

Command:
changes the state of an object
returns no information.

Query or Property:
returns information about the state of an object, does not alter the state.

Constraints on behaviour:
consistency requirements
business rules

Behaviour

Defined by the set of commands and queries the object offers. This set defines the features of an object.

Features

SYMBOL 183 \f "Symbol" \s 10 \h
Can be attributes or routines.

SYMBOL 183 \f "Symbol" \s 10 \h
Routines are functions or procedures.

Analysis
Design / implementation

operation
(change state)
procedure
(routine)

query
function

attribute

A feature is defined by the way it connects to the outside world.
Called the signature of the feature.

SYMBOL 183 \f "Symbol" \s 10 \h
the name of the routine

SYMBOL 183 \f "Symbol" \s 10 \h
the number of formal arguments

SYMBOL 183 \f "Symbol" \s 10 \h
the types of the formal arguments

SYMBOL 183 \f "Symbol" \s 10 \h
the return type if the routine is a function

sqrt (x : REAL) : REAL

An attribute behaves identically to a function with no arguments.

For the client class, Eiffel does not distinguish syntactically between attributes and functions.
e.g. # elements in a stack could be implemented as a variable (attribute) or as a function

Classes

Behaviour is defined on classes of objects; and individual objects are instances of their class.

eg
Number is a class, 3 is an object.

+,-, etc are defined on Number.
They apply to all instances of Number.

eg
Borrower is a class, features may include
name, address, finesOutstanding, payFines

"David Clark" is an instance of Borrower.

An OO system is written by defining the set of classes needed in the system, and creating instances of the classes when the system is executed.

The program text only contains classes

At run time, only objects exist

A class is an implementation of an ADT

encapsulation of data + methods

 Traditional Structured Design

Requirements

Analysis

Design

Implementation / testing

Maintenance

Definite steps, with well-defined deliverables at each stage.

But different models, different notations.

There has to be a translation from the notation of one phase to the notation of the next.

Object vs Function oriented analysis & design

[image: image1.wmf]The Library

Information

System

System

Object-oriented A/D

Decompose by objects or concepts

Structured A/D

Decompose by functions or processes

Record Loans

Add Resources

Report

Fines

Catalog

Book

Librarian

Library

Object Oriented Approach

SYMBOL 183 \f "Symbol" \s 10 \h
has a single model

SYMBOL 183 \f "Symbol" \s 10 \h
has a single representation

SYMBOL 183 \f "Symbol" \s 10 \h
uses the same set of mental constructs

SYMBOL 183 \f "Symbol" \s 10 \h
leads to a seamless transition through all stages

The advantage of the waterfall model is that you know when each phase is ended.

The disadvantage is that you need omniscient requirements specification and omniscient analysis.

It leads to systems that are very difficult to maintain when the requirements change - e.g. in the bank simulation, allow customers to get fed up waiting and leave without being served.

[image: image2.wmf]
classic 3 tier architecture

[image: image3.wmf]Record sales

Presentation

Application

Logic

Authorize

payments

Storage

Database

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

Architectural layers

Presentation

GUI, console, Web

Problem domain

books, borrowers, …

service objects

interface to DB

storage

persistent storage

case study

Point of Sale Terminal (POST)

· computerised system to record sales and handle payments

· retail store

· hardware (computer, bar code scanner) + software

Requirements → OOA → OOD → Implementation

requirements

Identify and document what is required

· overview

· customers

· goals

· system functions

· system attributes

overview

The purpose of the project is to create a point of sale terminal system to be used in retail sales

customers

OOSD lecturer and tutor

goals

fast checkout

fast sales analysis

automatic inventory control

system functions

“This system should do X”

evident

hidden
eg save information

frill
optional

basic functions

record current sale
evident

calculate current sale total
evident

capture purchase price of item from bar code scanner or manually
evident

reduce inventory quantities
hidden

log completed sales
hidden

cashier must log in with id and password
evident

provide persistent storage mechanism
hidden

provide communication mechanisms to other processes and systems
hidden

display description and price of sales items
evident

payment functions

handle cash payments and calculate change
evident

handle credit card payments
evident

handle cheque payments
evident

log payments to accounts receivable
hidden

system attributes (characteristics)

· ease of use
· fault tolerance

· response time
· interface metaphor

· retail cost
· platforms

— 17 —

_882274143

_993374333

