ITPlect21

 Model View Separation Pattern
(no direct communication to windows)

Comes from Smalltalk80 where it was known as MVC

model
(
domain

view
(
presentation

MV separation says that model objects have no direct knowledge of view objects

	(
	1. domain objects do not display themselves
no system.out.println(id) in Student
2. domain objects do not send messages such as view.displayMessage(msg) to view objects

Motivation

· model definition is more cohesive – focus on the domain processes

· allows separate development of model and user interface

· changes to interface do not propagate to model

· allows new views to be added without changes to the model

· allows multiple simultaneous views

· allows processing with no user interface
(overnight batch runs)

· allows easy porting to other platforms

How do views update themselves?

1. Polling
view decides when to query the model for the information it needs

when a window opens

when a window regains focus

after a system event it initiates

on a regular basis

2. Indirect communication

Observer Pattern ("Design Patterns", chapter 5)

Also known as Publish / Subscribe

Basic idea is

view(s) tell the model that they exist (subscribe)

after change of state, model notifies view (publish)

on notification views query model for new data

	(
	1. Model has a method subscribe() which views use to attach themselves to the model.

2. Model has a method notify() which tells each view that it should update itself.

3. View has a method update() which the model calls when its state has changed.
What the view does with this is up to itself.

simple example of polling

get a bunch of items (UPC + description)

public class ItemWindow {

public ItemWindow (Catalog catalogue) {

catalog = catalogue;

getItems()

} // ItemWindow

private getItems() {

String upc;

String description;

boolean finished = false;

while (!finished) {

println("Enter UPC (empty to finish)");

upc = readLine();

if (upc.empty())

finished = true;

else {

println("Enter description");

description = readLine ();

catalogue.addItem(upc, description);

numItems = catalog.size();

println(numItems + "items in catalog");

}

} // getItems

} // class ItemWindow

publish / subscribe

abstract class Model {

private LinkedList views;

public Model() {

views = new LinkedList();

} // Model

public void subscribe(View v) {

views.extend(v);

} // subscribe

private void notify() {

Enumeration e = views.elements();

while (e.hasMoreElements() {

v = (View) e.nextElement();

v.update(this);

}

} // notify

...

} // class Model
abstract class View {

public View() {

...

model.attach(this);

} View

abstract public update(Model model);

...

} // class View

the presentation layer

[image: image1.wmf]Record sales

Presentation

Application

Logic

Authorize

payments

Storage

Database

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

· Windows Programming

· Grape Toolkit

· Interaction between User Interface and Model

windows programming

In traditional non event-driven programs, the flow control is determined by the program (or the algorithm it implements). Typically a program would have the structure

get data

while more data

process data

output results

get data

output summary

In GUI programs the flow of control depends on user actions. This is not predictable by the programmer.
A user can ask for any (available) service at any time. There is a main loop but it is hidden inside the Windows system. What the programmer has to do is to implement the reaction to events such as mouse click or menu selection.

A GUI program "sleeps" until an event occurs. When an event occurs the Windows System kernel send a signal by invoking a callback function. The main difference between a callback and an ordinary function is that the caller is the Windows System kernel.

Windows

What things are windows?

Is a window an object in the true OO sense?

Is there a class from which you create instances?

Are there properties and methods?

Is there any notion of inheritance?

Users think of a window as the whole space allocated to a program. From an API point of view though, this is in fact many windows. The minimize button is a window, the maximise button is a window and so on.

If you display a dialog box, every control in that dialog is a window.

Messages

How do GUI Programs work?

They only do something when told.

An ‘old-style’ application is in charge of what happens. It decides when to read input from the user, when to generate output, when to calculate, etc.

In a GUI environment, the user is in charge. The user can minimise, restore, etc any app at any time. Can interact with whichever app they choose, might type input into any of the available input fields at any time, could click any button, or select any menu command.

The GUI program, once initialised, must simply sit there and wait to be told what it is to do next.

The system generates messages which tell the program what to do

Messages for everything - mouse move, click, keystroke, minimise, window resize - some 600 different type

There might be 600 or so different message types, but fortunately Windows can handle most of them by default. You only need worry about the few that are particularly applicable to your application.

Delivering Messages

Messages are placed in a queue for the application

Messages are destined for a window

The application is responsible for extracting messages from the queue, and delivering them to a window ASAP

The Message Loop

the underlying message loop is

while (GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);

DispatchMessage (&msg);

}

return msg.wParam;

GetMessage only returns false (causing the loop to exit) if the message is of type WM_QUIT

TranslateMessage does some housekeeping to do with the keyboard

DispatchMessage is responsible for determining which window should process the message, finding the associated window procedure, and calling that window procedure.

There is an assumption that each call to the Window Function will be short (e.g. <0.1 sec) so that the GetMessage loop will proceed quickly. In 16-bit Windows, it is only when GetMessage is called that the OS can switch control from this to another app.

The Window Procedure

Responsible for acting on messages

Must determine the type of message and take type specific action

Any unprocessed messages must be passed back to Windows for default processing (a weak inheritance)

Message Queues and Multitasking

Windows 3.x

All WinApps in a single address space

One message queue

definitely only co-operative multi-tasking

one app could freeze the whole system

OS/2

Each WinApp in its own address space

One system message queue

One message queue per windows owning thread

Serialized distribution from system message queue

An app can still hang the system

Windows 95 and Windows NT

Each WinApp in its own address space

One system message queue

One message queue per thread

DeSerialized distribution from system message queue

An app cannot hang the system

95 and NT distribute messages from the system queue to application thread queues as quickly as possible - without waiting for one message to be processed before delivering the next.

This has the potential for distributing a message (particularly a keystroke message) to the wrong app. However this is actually very unlikely, and even if it does occur is even less likely to have irrevocable consequences.

The big plus is that message distribution in general is not dependent on the correct behaviour of any app. One app freezing cannot freeze the rest of the system

windows api

Set of components (toolkit) to enable programmers to write GUI applications.

Very low level.

Contributed to success / dominance of M/S.

Windows API very low level

Other GUI libraries written to make life easier for the developer.

Operate at higher level.

Often use the services of API.

Examples include

MFC

Java AWT

Java Swing

GTK

Eiffel vision

Grape

...

— 1 —

