ITPlect16.doc

the persistence layer

(chapter 38)

Classic three tier architecture

[image: image1.wmf]Record sales

Presentation

Application

Logic

Authorize

payments

Storage

Database

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

Multitiered architecture ((3 tiers)
Isolate application logic into separate components which can be reused in other system

Distribute tiers on different machines

Allocate developers to specific tiers

Database Brokers

Java files and streams

Catalog broker

The Façade Pattern

database brokers

Who should be responsible for storing and retrieving objects such as Catalog?

The class itself could (by expert), but 2 problems

tightly couples the class to a particular way of doing the storage,

introduces a whole new set of responsibilities (features) which have little to do with the other responsibilities of the class.

The first of these violates low coupling and so makes maintenance and reuse harder.

The second violates high cohesion and again makes maintenance and reuse more difficult.

The solution is to construct a class which has the responsibility for storing and retrieving objects.

This is the Database Broker pattern.

There may be a database broker class for each persistent object class. Alternatively, one database broker may handle many classes.

 CatalogBroker

We are now in a position to write a CatalogBroker (version 1). All it will do is to store and retrieve a Product Catalog (from Post).

public class Catalog implements java.io.Serializable;

The main methods of CatalogBroker are commit which saves the catalogue to a file and retrieve which reads it from the file.

public class CatalogBroker {

 public void commit() throws IOException;

 public Catalog retrieve() throws IOException;

}

 The whole class is

import java.io.*;

import java.util.*;

/** stores and retrieves Catalog

 */

public class CatalogBroker {

 private Catalog cat = null;

public Catalog getCatalog()

 throws IOException {

if (cat == null)

 cat = retrieve();

return cat;

} // getCatalog

public void commit() throws IOException {

// as earlier

private Catalog retrieve() throws IOException {

// as above

} // class CatBroker

— 6 —

