ITPlect15.doc

iContract

Java does not have language support for Design by Contract.

There is a tool which provides implementation support for Design by Contract in Java.

The tool was written by Reto Kramer, and is called iContract.
iContract may be downloaded from

http://www.reliable-systems.com/
iContract reads special comment tags and generates code to check preconditions, postconditions and class invariants.

@pre
preconditions on methods of classes and interfaces

@post
postconditions on methods of classes and interfaces

@invariant
invariants of classes and interfaces

The Sale class

Sale

lineItems

isComplete

Sale()

makeComplete()

isComplete()

makeLineItem(spec, qty)

Assertions on the Sale class.

makeComplete

pre : not complete

post : complete

isComplete

post : return isComplete

creation

post : isComplete is false

makeLineItem(spec, qty)

pre : spec not null

 qty > 0

post : one more lineItem

latest line item has qty and spec

class invariant

lineItems not null

The code below is from textbook p311, just the functions above, plus an explicit constructor.

/**

 * @invariant lineItems != null

 */

class Sale {

/**

 * @post isComplete == false

 */

public Sale() {

isComplete = false;

} // Sale

/**

 * @pre ! isComplete

 * @post isComplete

 */

public void becomeComplete() {

isComplete = True;

} // becomeComplete

/**

 * @post result == isComplete

 */

public boolean isComplete() {

return isComplete;

}

/**

 * @pre spec != null

 * @pre qty > 0

 * @post lineItems.size() == lineItems.size()@pre + 1

 * @post lineItems.lastElement().spec == spec

 * @post lineItems.lastElement().qty == qty

 */

public void makeLineItem

(ProductSpecification spec, int qty) {

SaleLineItem item;

item = new SaleLineItem(spec, qty);

lineItems.addElement(item);

} // makeLineItem

private Vector lineItems = new Vector();

private boolean isComplete;

} // class Sale

java from the command line

Typically Java programs are developed within an integrated environment. This is convenient, but sometimes it is necessary to use the command line. (This is particularly so in Unix.)

There are two steps:

1: >javac xyz.java

javac is the Java compiler.

It takes source code xyz.java and produces a file xyz.class

.class files are in byte code. Byte code is similar to assembly code, but it is not targeted to a specific machine.

2: >java xyz

Java programs run a Java Virtual Machine (JVM). A JVM acts as a Java interpreter - it reads bytecode and executes the program.

A JVM also checks that

the program does not go outside the bounds of its allocated memory,

the bytecode has not been tampered with

the program has permission to access resources such as files and network connections.

The two stage process means that once programs have been written, their bytecode can be run on any platform with a JVM.

environment variables

Environment variables are "variables" which are known to the operating system. They are strings. Each environment variable has a value associated with it. The value is also a string.

path
used by the operating system to find out where to look for executable programs and batch files.
%VisStudio%\Common\MsDev98\bin;
%VisStudio%\Common\MsDev98\bin\IDE;
%VisStudio%\VC98\bin;
%eiffel4%\bench\spec\windows\bin

VisStudio is itself an environment variable
C:\Program Files\Microsoft Visual Studio

include,
lib
used by compilers to find out where to look for include and library files.

path comes automatically with the O/S.
Applications often add their own environment variables when they are being installed (eg lib and include).
Java looks to see if there is a classpath environment variable which it uses to find where to look for .class files.

You can add environment variables in Windows by

a) <settings><control panel><system><environment>

b) from the command prompt
>set classpath=h:\Java\iContract
only persists while the window is open.

additional types of expressions

Implies 

"A implies B" is translated as "if A then check B"

example: (lecture 13, p12) In Post we need to know whether a sale is under way and if it is whether it has been completed. One implementation was to have 2 boolean variables, saleStarted and saleComplete.

saleStarted
saleComplete

before sale starts
false
false

while items are being entered
true
false

after sale complete
true
true

after payment made
false
false

saleComplete cannot be true if saleStarted is false. So we can write an assertion saleComplete  saleStarted This would be a class invariant.

/**

 *@invariant saleComplete implies saleStarted

 */

public class Post

Note that we could also have written the assertion as

not (saleComplete and not saleStarted)
or
not saleComplete or saleStarted.

In general A  B  ~A  B, but implies can be clearer.

There exists 

This allows us to say "there must be a member of a collection with a certain property"

example:
In the class ProductCatalog we have an attribute specs which is a collection of type Spec. ProductCatalog also has a method addSpec(Spec s). We want to be sure that s has been added to specs. So we write a postcondition

/**

 *@post exists Spec t in specs.elements() | t == s

 */

public void addSpec(Spec s)

In general the syntax is

exists <Class> <var> in <Enum> | <Expr_var>

<Class> is a class name for casting

<var> is a variable name

<Enum> is an enumeration

<Expr_var> is an expression which may contain <var>

For all 

This allows us to say "every member of a collection must have a certain property"

example:
In the class ProductCatalog we have an attribute specs which is a collection of type Spec. Each specification has a description which should not be empty. So we write a class invariant

/**

 * @invariant forall Spec t in specs.elements() |

 * ! t.description().empty()

 */

public class ProductCatalog

In general the syntax is

forall <Class> <var> in <Enum> | <Expr_var>

–—™

On the ITP home page

Under iContract

Main.java, Employee.java, Person.java

files, getting started, documentation

Inheritance

If class B inherits from class A, what happens in B for the preconditions, postconditions and invariants of A?

In Java (and other O/O languages) you can store a subclass instance in a class variable

A x = new B();

as in

Person p = new Employee(...);

Why would you want to do this?

There are lots of times that you have a variable of one type, but you don't care too much about its particular type. The knowledge that it belongs to a superclass may be enough

class Party {

 public void invite(Person p);

}

The you could have

Party party = new Party();

Employee emp = new Employee(...);

party.invite(emp);

The invite() method gets an Employee, but only cares about it as a Person.

If an employee is treated as a person, then the contract for employee must behave at least like a person.

The precondition on any method can be weaker. It cannot impose any extra conditions, but can be satisfied in more circumstances

The postcondition on any method can be stronger. It must deliver at least as much, but could deliver more

Similarly for the invariant.

In iContract a method may be declared in a superclass with conditions, and redeclared in a subclass with extra conditions. The rule it uses is:

Precondition: make a logical or of all the preconditions

Postcondition: make a logical and of all the postconditions

Invariant: make a logical and of all the invariants

- 14 -

