ITP2000lect10

grasp patterns

General Responsibility Assignment Software Patterns

patterns for assigning responsibility

Expert

Creator

High Cohesion

Low Coupling

· Controller

Today we will be focussing on Controller

façade pattern

(Design Patterns p185)

Structuring a system into subsystems reduces complexity

Conference management system

registration subsystem

technical events subsystem

organization subsystem

A Façade is a class that sits between a subsystem and its clients

It provides a single unified interface to a subsystem

[image: image1.wmf]
subsystem without a facade

[image: image2.wmf]
subsystem with a façade

Benefits of Façade

· promotes weak coupling between subsystems and their clients

· clients only have to deal with one object

· can vary components in a subsystem without affecting clients

· allows separate development of subsystems

· reduces compilation dependencies

· clients can still interact directly with individual components if they wish

controller

Problem: who is responsible for handling a system event?

Solution: Assign responsibility to a class either

representing the overall system

(façade controller)

representing the overall business

(façade controller)

representing something or someone in the real world who is active in the task

(role controller)

· representing an artificial handler of all system events in a use case

(use case controller)

	Controller is NOT a user interface object such as a window or an applet

User interface objects receive events and delegate to a controller.

[image: image3.wmf]Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

:POST

Cashier

:POSTCommand

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale

1.1: makeLineItem(upc, qty)

Presentation Layer

(Command Object)

Domain Layer

system event message

controller

Good design
- presentation layer decoupled from problem domain

[image: image4.wmf]Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

Cashier

:POSTCommand

presses button

onEnterItem()

:Sale

1: makeLineItem(upc, qty)

Presentation Layer

(Command object)

Domain Layer

It is undesirable for a presentation

layer objects such as a Java applet to

get involved in deciding how to handle

domain processes.

Business logic is embedded in the

presentation layer, which is not useful.

POSTApplet should not

send this message.

Bad design
– presentation layer coupled to problem domain

System events in Buy Items use case

enterItem()

endSale()

makePayment()

who has the responsibility for enterItem()?

By controller, we have 4 choices

	the overall system
	Post

	the overall business
	Store

	someone in the real world
who is active in the task
	Cashier

	an artificial handler of all system events is a use case
	BuyItemsHandler

[image: image5.wmf]:POST

enterItem(upc, quantity)

:Store

enterItem(upc, quantity)

:Cashier

enterItem(upc, quantity)

:BuyItemsHandler

enterItem(upc, quantity)

The choice of which one to use will be influenced by other factors such as cohesion and coupling.

Some comments

use the same controller for all systems events of a use case

controllers don't do the work themselves – they delegate

Façade controller

best when there are only a few system events

Role controller

can be incohesive if does not delegate

persons are multi-skilled – classes are not

Use case controller

have a different controller for each use case

good option when other choices lead to low cohesion and/or high coupling

Avoid

one controller for all system events

a controller doing all of the work

a controller with too many attributes

Benefits of controller

· potential for reuse

with a new application can use the same domain process logic, but wouldn't use the same window

· semantics of use case is localised

first enterItem() event creates new Sale, subsequent ones don’t.

makePayment() after endSale()
collaboration diagrams

(chapter 19)

Each use case will generate one or more system events. System events cause system operations – operations of the system in response to system events.

	use case
	system events

	buy items
	enter item

end sale

make payment

Collaboration diagrams document the message passing between components within the system in response to a system event
i.e. during a system operation.

They are used to

a) check that the system can carry out the use case

b) assign methods to classes in the class design diagrams

The starting point is the contracts

Contract for enter item
	Name
	enterItem

upc : text

quantity : integer

	Responsibilities
	Enter (record) sale of an item and add it to the sale.
Display the item description and price.

	Cross references
	Buy items use case

	Preconditions
	UPC is valid; quantity > 0

UPC is known to system

	Postconditions
	If a new sale, a Sale was created

If a new sale, the new Sale was associated with the POST

A SaleLineItem was created

The SaleLineItem was associated with the Sale
SaleLineItem.quantity was set to quantity

The SaleLineItem was associated with a ProductSpecification, based on UPC match

Controller class for enterItem()
Choose Post as controller

Façade controller is OK – few system operations.

[image: image6.wmf]enterItem(upc, qty)

:POST

by Controller

Multiobjects (collections)

[image: image7.wmf] is a multiobject

Methods of multiobjects

find element

add element

remove element

how many elements?

Complete collaboration diagram for enterItem()
[image: image8.wmf]1: [new sale] create()

3: makeLineItem(spec, qty)

enterItem(upc, qty)

2: spec := specification(upc)

3.1: create(spec, qty)

2.1: spec := find(upc)

:POST

:Sale

:Product

Catalog

sl: SalesLineItem

SalesLineItem

:SalesLineItem

:Product

Specification

1.1: create()

3.2: add(sl)

(aside: we ignore displaying description and price
- see Model View separation later)

Setting attributes

endSale() operation

postcondition

Sale.isComplete is True (attribute modification)

[image: image9.wmf]:POST

endSale()

:Sale

1: becomeComplete()

by Expert

by Controller

becomeComplete()

{

 isComplete := true

}

startup use case

(Switching on each morning)

Best postponed till last, so that we know what needs to be done.

Need to create an initial domain object which creates other domain objects.

The object which creates the initial domain object is language dependent.

Generally in a GUI, an initial window (or applet) will be created automatically. This is the best object to create the initial domain object.

Initial domain object

This will be a class representing

the system (Post)

the organization or business (Store)

we will choose Store.

Startup contract

postconditions

Store, Post, ProductCatalog, ProductSpecns have been created

ProductCatalog associated with ProductSpecns

Store associated with ProductCatalog

Store associated with Post

Post associated with ProductCatalog

[image: image10.wmf]:Store

:POST

pc:

ProductCatalog

create()

2: create(pc)

1: create()

1.2: loadProdSpecs()

:Product

Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(upc, price, description)

ps:

ProductSpecification

Asterix in sequence number

indicates the message occurs in

a repeating section.

Pass a reference to the

ProductCatalog to the

POST, so that it has

permanent visibility to it.

by Creator

connecting presentation layer to domain layer

If an GUI is involved, typically a Windows object will be the first object created. This could be a Java AWT Frame object or a Swing Jframe.

It will then create the initial domain object (Store) which will create a Post instance.

The windows object requests a reference to the Post. It will build command objects which know the Post so that the command objects can send messages to it.

[image: image11.wmf]store :Store

1: create()

2: p := getPOST() : POST

:POSTApplet

create()

The command objects can now forward system event messages to the Post

[image: image12.wmf]post : POST

Cashier

:POSTCommand

onEnterItem()

1: enterItem(upc, qty)

system event

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

presses button

Presentation

Layer

Domain

Layer

Displaying

The command objects have a reference to domain object, so after a system event it can query domain object and update itself.

What a command object does when Enter Item is pressed

1. Send enterItem() message to Post
2. Ask Post for reference to Sale
(store Sale reference as an attribute).

3. Send total() message to Sale so it can display running total in the window.

[image: image13.wmf]post : POST

Cashier

:POSTCommand

onEnterItem()

1: enterItem(upc, qty)

2: [no sale] sale := getSale() : Sale

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

presses button

Presentation

Layer

Domain

Layer

sale : Sale

3: t := total() : Float

	Presentation and domain layer responsibilities

Presentation layer should only be responsible for presentation tasks such as display and collecting data.

Presentation layer should have no domain logic responsibilities.

Presentation layer should forward requests for domain oriented tasks to domain layer. Domain layer is responsible for carrying them out.

Presentation layer asks domain layer for information to display.

— 19 —

_996665681.doc
[image: image1.bmp]

_1029233674.doc

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

:POST

Cashier

:POSTCommand

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale

1.1: makeLineItem(upc, qty)

Presentation Layer

(Command Object)

Domain Layer

system event message

controller

_1029233790.doc

post : POST

Cashier

:POSTCommand

onEnterItem()

1: enterItem(upc, qty)

system event

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

presses button

Presentation

Layer

Domain

Layer

_1029233819.doc

post : POST

Cashier

:POSTCommand

onEnterItem()

1: enterItem(upc, qty)

2: [no sale] sale := getSale() : Sale

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

presses button

Presentation

Layer

Domain

Layer

sale : Sale

3: t := total() : Float

_1029233737.doc

Object Store

Enter Item

End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

Cashier

:POSTCommand

presses button

onEnterItem()

:Sale

1: makeLineItem(upc, qty)

Presentation Layer

(Command object)

Domain Layer

It is undesirable for a presentation

layer objects such as a Java applet to

get involved in deciding how to handle

domain processes.

Business logic is embedded in the

presentation layer, which is not useful.

POSTApplet should not

send this message.

_996672764.doc

_996663886.doc

