Web services
Intermediate Level Administration (LPIC-2) topic 208

Skill Level: Intermediate

David Mertz (mertz@gnosis.cx)
Developer
Gnosis Software, Inc.

25 Apr 2006

In this tutorial, the fourth in a series of seven tutorials covering intermediate network
administration on Linux, David Mertz continues preparing you to take the Linux
Professional Institute® Intermediate Level Administration (LPIC-2) Exam 208. Here,
David Mertz discusses how to configure and run the Apache HTTP server and the
Squid proxy server.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at two
levels: junior level (also called "certification level 1") and intermediate level (also
called "certification level 2"). To attain certification level 1, you must pass exams 101
and 102; to attain certification level 2, you must pass exams 201 and 202.

developerWorks offers tutorials to help you prepare for each of the four exams. Each
exam covers several topics, and each topic has a corresponding self-study tutorial
on developerWorks. For LPI exam 202, the seven topics and corresponding
developerWorks tutorials are:

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 15

mailto:mertz@gnosis.cx
http://www.ibm.com/developerworks/linux/lpi/201.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

developerWorks®

ibm.com/developerWorks

Table 1. LPI exam 202: Tutorials and topics

LPI exam 202 topic
Topic 205

Topic 206

Topic 207

Topic 208

Topic 210

Topic 212

Topic 214

developerWorks tutorial

LPI exam 202 prep (topic
205):
Networking configuration

LPI exam 202 prep (topic
206):
Mail and news

LPI exam 202 prep (topic
207):
DNS

LPI exam 202 prep (topic
208):
Web services

LPI exam 202 prep (topic
210):
Network client management

LPI exam 202 prep (topic
212):
System security

LPI exam 202 prep (topic
214):
Network troubleshooting

Tutorial summary

Learn how to configure a basic
TCP/IP network, from the
hardware layer (usually
Ethernet, modem, ISDN, or
802.11) through the routing of
network addresses.

Learn how to use Linux as a
mail server and as a news
server. Learn about mail
transport, local mail filtering,
mailing list maintenance
software, and server software
for the NNTP protocol.

Learn how to use Linux as a
DNS server, chiefly using
BIND. Learn how to perform a
basic BIND configuration,
manage DNS zones, and
secure a DNS server.

(This tutorial) Learn how to
install and configure the
Apache Web server, and learn
how to implement the Squid
proxy server. See detailed
objectives below.

Coming soon

Coming soon

Coming soon

To start preparing for certification level 1, see the developerWorks tutorials for LPI
exam 101. To prepare for the other exam in certification level 2, see the
developerWorks tutorials for LPI exam 201. Read more about the entire set of
developerWorks LPI tutorials.

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lIpi.org.

Web services
Page 2 of 15

© Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2205-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2206-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic2207-i.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+201&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

About this tutorial

Welcome to "Web services," the fourth of seven tutorials covering intermediate
network administration on Linux. In this tutorial, you learn how to configure and run
the Apache HTTP server and the Squid Web Proxy Cache.

As with the other tutorials in the developerWorks 201 and 202 series, this tutorial is
intended to serve as a study guide and entry point for exam preparation, rather than
complete documentation on the subject. Readers are encouraged to consult LPI's
detailed objectives list and to supplement the information provided here with other
material as needed.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weight.

Table 2. Web services: Exam objectives covered in this tutorial

LPI exam objective Objective weight Objective summary
2.208.1 Weight 2 Install and configure a Web
Implementing a Web server server. This objective includes

monitoring the server's load
and performance, restricting
client user access, configuring
support for scripting
languages as modules, and
setting up client user
authentication. Also included
is the ability to configure
server options to restrict
usage of resources.

2.208.2 Weight 2 Configure a Web server to use

Maintaining a Web server virtual hosts, Secure Sockets
Layer (SSL), and customize
file access.

2.208.3 Weight 2 Install and configure a proxy

Implementing a proxy server server, including access

policies, authentication, and
resource usage.

Prerequisites

To get the most from this tutorial, you should already have a basic knowledge of
Linux and a working Linux system on which you can practice the commands covered
in this tutorial.

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 15

http://www.lpi.org/en/lpic.html
http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Section 2. About Apache and Squid

Apache Web server

Apache is the predominant Web server on the Internet as a whole; it is even more
predominant among Linux servers. A few more special-purpose Web servers are
available (some offering higher performance for specific tasks), but Apache is
always the default choice.

Apache comes pre-installed on most Linux distributions and is often already running
after being launched during initialization, even if you have not specifically configured
a Web server. If Apache is not installed, use the normal installation system of your
distribution to install it, or download the latest HTTP server from the Apache HTTP
Server Project. Many extra capabilities are provided by modules, many are
distributed with Apache itself, and others are available from third parties.

Even though the latest Apache has been at the 2.x level since 2001, Apache 1.3.x is
still in widespread use, and the 1.3.x series continues to be maintained for bug fixes
and security updates. Some minor configuration differences exist between 1.3 and
2.x; a few modules are available for 1.3 that are not available for 2.x. The latest
releases as of this tutorial are 1.3.34 (stable), 2.0.55 (stable), and 2.1.9 (beta).

As a rule, a new server should use the latest stable version in the 2.x series. Unless
you have a specific need for an unusual older module, 2.x provides good stability,
more capabilities, and overall better performance (in some tasks, such as in PHP
support, 1.3 still performs better). Moving forward, new features will certainly be
better supported in 2.x than in 1.3.x.

Squid proxy server

Squid is a proxy-caching server for Web clients that supports the HTTP, FTP, TLS,
SSL, and HTTPS protocols. By running a cache on a local network, or at least closer
to your network than the resources queried, speed can be improved and network
bandwidth reduced. When the same resource is requested multiple times by
machines served by the same Squid server, the resource is delivered from a
server-local copy rather than requiring the request to go out over multiple network
routers and to potentially slow or overload destination servers.

You can configure Squid as an explicit proxy that must be configured in each Web
client (browser), or you can configure it to intercept all Web requests out of a LAN

Web services
Page 4 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://httpd.apache.org/download.cgi
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

and cache all such traffic. You can configure Squid with various options regarding
how long and under what conditions to keep pages cached.

Other resources

As with most Linux tools, it is always useful to examine the manpages for any
utilities discussed. Versions and switches might change between utility or kernel
version or with different Linux distributions. For more in-depth information, the Linux
Documentation Project has a variety of useful documents, especially its HOWTOs. A
variety of books on Linux networking have been published; | have found O'Reilly's
TCP/IP Network Administration, by Craig Hunt, to be quite helpful. (See Resources
later in this tutorial for links.)

Many good books have been written on working with Apache. Some are concerned
with general administration, while others cover particular modules or special
configurations of Apache. Check your favorite bookseller for a range of available
titles.

Section 3. Implementing a Web server

A swarm of daemons

Launching Apache is similar to launching any other daemon. Usually you want to put
its launch in your system initialization scripts, but in principle you may launch
Apache at any time. On most systems, the Apache server is called httpd, though it
may be called apache2 instead. The server is probably installed in /usr/sbin/, but
other locations are possible depending on the distribution and how you installed the
server.

Most of the time you will launch Apache with no options, but the - d ser verr oot
and - f confi g options are worth keeping in mind. The first lets you specify a
location on the local disks from where content will be served; the second lets you
specify a non-default configuration file. A configuration file may override the - f
option using the Ser ver Root directive (most do). By default, configuration files are
either apache2.conf or httpd.conf, depending on compilation options. These files
might live at /etc/apache?2/, /etc/apache/, /etc/httpd/conf/, /etc/httpd/apache/conf, or a
few other locations depending on version, Linux distribution, and how you installed
or compiled Apache. Checking man apache2 or man htt pd should give you
system-specific details.

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 15

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

The Apache daemon is unusual when compared with other servers in that it usually
creates several running copies of itself. The primary copy simply spawns the others,
while these secondary copies service the actual incoming requests. The goal of
having multiple running copies is to act as a "pool" for requests that may arrive in
bundles; additional copies of the daemon are launched as needed, according to
several configuration parameters. The primary copy usually runs as root, but the
other copies run as a more restricted user for security reasons. For example:

Listing 1. The many faces of multiple running copies of Apache

ps axu | grep apache2
6620 Ss

r oot Novl2 0:00 /usr/shin/apache2 -k start -DSSL
ww- data 6621 S Novl2 0:00 /usr/shin/apache2 -k start -DSSL
ww data 6622 Sl Nov12 0: 00 /usr/sbin/apache2 -k start -DSSL
ww data 6624 Sl Nov12 0: 00 /usr/sbin/apache2 -k start -DSSL
dgm 313 S+ 03: 44 0: 00 nan apache2

r oot 637 S+ 03: 59 0: 00 grep apache2

On many systems, the restricted user will be nobody. In Listing 1, it is ww\«+ dat a.

Including configuration files

As mentioned, the behavior of Apache is affected by directives in its configuration
file. For Apache2 systems, the main configuration file is likely to reside at
/etc/apache2/apache2.conf, but often this file will contain multiple | ncl ude
statements to add configuration information from other files, possibly by wildcard
patterns. Overall, an Apache configuration is likely to contain hundreds of directives
and options (most not specifically documented in this tutorial).

A few files are particularly likely to be included. You might see httpd.conf for "user"”
settings, to utilize prior Apache 1.3 configuration files that use that name. Virtual
hosts are typically specified in separate configuration files, matched on a wildcard,
like in the following:

Listing 2. Specifying virtual hosts

I nclude the virtual host configurations:
I ncl ude /etc/apache2/sites-enabl ed/[". #]*

With Apache 2.x, modules are typically specified in separate configuration files as
well (more often in the same file in 1.3.x). For example, a system of mine includes:

Listing 3. From /etc/apache2/apache2.conf

| ncl ude nmodul e configuration:
I ncl ude /etc/apache2/ nods-enabl ed/ *. | oad

Web services
Page 6 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

I ncl ude /etc/apache2/ nods- enabl ed/ *. conf

Actually using a module in a running Apache server requires two steps in the
configuration file, both loading it and enabling it:

Listing 4. Loading an optional Apache module

cat /etc/apache2/ nods-enabl ed/ userdir. | oad
LoadMobdul e userdir_nodul e /usr/|ib/apache2/ nodul es/ mod_userdir. so
cat /etc/apache2/ nods-enabl ed/ userdir. conf
<| f Modul e nmod_userdir.c>
UserDir public_htm
UserDir disabl ed root

<Directory /home/*/public_htm >
Al l owOverride Filelnfo AuthConfig Limt
Options MultiViews | ndexes SynlLinkslfOaner Vat ch | ncl udesNoExec
</Directory>
</'| f Modul e>

The wildcards in the | ncl ude lines will insert all the .load and .conf files in the
/etc/apache2/mods-enabled/ directory.

Notice the general pattern: Basic directives are one-line commands with some
options; more complex directives nest commands using an XML-like open/close tag.
You just have to know for each directive whether it is one-line or open/close style --
you cannot choose among styles at will.

Log files

An important class of configuration directives concern logging of Apache operations.
You can maintain different types of information and degrees of detail for Apache
operations. Keeping an error log is always a good idea; you can specify it with the
single directive:

Listing 5. Specifying an error log

G obal error |og.
ErrorLog /var/| og/ apache2/error.| og

You can customize other logs of server access, of referrers, and of other information
to fit your individual setup. A logging operation is configured with two directives.
First, a LogFor mat directive uses a set of special variables to specify what goes in
the log file; second, a Cust onLog directive tells Apache to actually record events in
the specified format. You can specify an unlimited number of formats regardless of
whether each one is actually used. This allows you to switch logging details on and
off, based on evolving needs.

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 15

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Variables in a LogFor mat are similar to shell variables, but with a leading % Some
variables have single letters, while others have long hames surrounded by brackets,
as shown in Listing 6.

Listing 6. LogFormat variables

LogFormat "% % % % \"%\" %s % \"% Referer}i\" \"% User-Agent}i\"" conbi ned
Custonlog /var/| og/ apache2/referer_| og conbi ned

Consult a book or full Apache documentation for the list of variables. Commonly
used ones include % for IP address of requesting client, % for datetime of the
request, %»s for HTTP status code, and the misspelled % Ref er er } for the
referring site that led to the served page.

The name used in the LogFor mat and Cust onlog directives is arbitrary. In Listing
6, the name conbi ned was used, but it could just as well be nmyf oobar | og.
However, a few names are commonly used and come with sample configuration
files, such as conbi ned, common, r ef er er, and agent . These specific formats
are typically supported directly by log-analyzer tools.

Section 4. Maintaining a Web server

Virtual hosts, multi-homing, and per-directory options

Individual directories served by an Apache server may have their own configuration
options. However, the main configuration may limit which options can be configured
locally. If per-directory configuration is desired, use the AccessFi | eName directive
and typically specify the local configuration filename of .htaccess. The limitations of
local configuration are specified within a <Di r ect or y> directive. For example:

Listing 7. Example of directory directive

#lLet's have sone |cons, shall we?
Alias /icons/ "/usr/share/apache2/icons/"
<Directory "/usr/share/ apache2/icons">
Options | ndexes Miulti Vi ews
Al l owOverri de None
O der all ow, deny
Al low from al |
</Di rectory>

Often working in conjunction with per-directory options, Apache can service virtual

Web services
Page 8 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

hosts. Multiple domain names may be served from the same Apache process, each
accessing an appropriate directory. You can define virtual hosts with the

<Vi r t ual Host > directive; place configuration files in an included directory, such as
/etc/apache?2/sites-enabled/, or in a main configuration file. For example, you might

specify:

Listing 8. Configuring virtual hosts

<Vi rtual Host "foo.exanpl e. coni'>
Server Adm n webmast er @ 0o. exanpl e. com
Docurnent Root /var/ww/ f 0o
Server Narme f o0o. exanpl e. com
<Directory /var/ww foo>
Opti1 ons | ndexes Fol | owSynLi nks Ml ti Vi ews
Al l owOverri de None
Order all ow, deny
allow from all
</Directory>
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/
<Directory "/usr/lib/cgi-bin">
Al l owOverride None
Options ExecCA -MiltiViews +SyniinkslfOnaner Mat ch
O der all ow, deny
Al'l ow from al |
</ Di rectory>
Cust onLog /var/| og/ apache2/foo_access. | og conbi ned
</ Vi r t ual Host >
<Vi rtual Host "bar.exanple.org">
Docunent Root / var/ww bar
Server Name bar . exanpl e. org
</ Vi rt ual Host >
<Virtual Host *>
Docunent Root / var/ ww
</ Vi r t ual Host >

The final * option picks up any HTTP requests that are not directed to one of the
explicitly specified names (like those addressed by IP address or addressed as an
unspecified symbolic domain that also resolves to the server machine). For virtual
domains to work, DNS must define each alias with a CNAME record.

Multi-homed servers sound similar to virtual hosting, but the concept is different.
Using multi-homing, you may specify the IP addresses to which a machine is
connected in order to allow Web requests. For example, you might provide HTTP
access only to the local LAN, but not to the outside world. If you specify an address
to listen on, you may also indicate a non-default port. The default value for

Bi ndAddr ess is *, which means to accept requests on every IP address under
which the server may be reached. A mixed example might look like:

Listing 9. Configuring multi-homing

Bi ndAddr ess 192. 168. 2. 2
Li sten 192.168. 2. 2: 8000
Li sten 64.41.64.172: 8080

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 15

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

In this case, we will accept all client requests from the local LAN (that use the
192.168.2.2 address) on the default port 80 and on the special port 8000. This
Apache installation will also monitor client HTTP requests from the WAN address,
but only on port 8080.

Limiting Web access

You may enable per-directory server access with the Or der, Al | ow fr om and
Deny fr omcommands within a <Di r ect or y> directive. Denied or allowed
addresses may be specified by full or partial hostnames or IP addresses. Or der lets
you give precedence between the accept list and the deny list.

In many cases, you need more fine-tuned control than you can gain by simply
allowing particular hosts to access your Web server. To enable user login
requirements, use the Aut h* family of commands, again within the <Di r ect or y>
directive. For example, to set up Basic Authentication, you might use a directive as
shown in Listing 10.

Listing 10. Configuring Basic Authentication

<Directory "/var/ww baz">
Aut hNanme " Baz"
Aut hType Basic
Aut hUser Fi l e /et c/ apache2/ http. passwords
Aut hGroupFi | e /et c/apache2/ http. groups
Require john jill sally bob
</Directory>

You may also specify Basic Authentication within a per-directory .htaccess file.
Digest Authentication is more secure than Basic, but Digest Authentication is less
widely implemented in browsers. However, the weakness of Basic (that it transmits
passwords in cleartext) is better solved with an SSL layer, anyway.

Support for SSL encryption of Web traffic is provided by the module nod_ssl . When
SSL is used, data transmitted between server and client is encrypted with a
dynamically negotiated password that is resistant to interception. All major browsers
support SSL. For more information on configuring Apache 2.x with nod_ssl , see
the description on the Apache Web site (see Resources for a link).

Section 5. Implementing a proxy server

Web services
Page 10 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

Installing and running Squid

In most distributions, you can install Squid using the normal installation procedures.
Get the source version of Squid from the Squid Web Proxy Cache Web site (see
Resources for a link). Building from source uses the basic . / confi gure; make;
make i nstall sequence.

Once installed, you may simply run it as root, /usr/shin/squid (or whatever location
your distribution uses, perhaps /usr/local/sbin/). Of course, to do much useful, you
will want to configure the Squid configuration file at /etc/squid/squid.conf,
/usr/local/squid/etc/squid.conf, or wherever precisely your system locates squid.conf.
As with almost all daemons, you may use a different configuration file, in this case
with the - f option.

Ports, IP addresses, http_access, and ACLs

The most important configuration options for Squid are the htt p_port options you
select. You may monitor whichever ports you wish, optionally attaching each one to
a particular IP address or hostname. The default port for Squid is 3128, allowing any
IP address that connects to the Squid server. To cache only for a LAN, specify the
local IP address instead as shown:

Listing 11. Caching Squid only for a LAN

defaul t (disabl ed)

http_port 3128

LAN only

http_port 192.168.2.2:3128

You may also enable caching via other Squid servers using the i cp_port and

ht cp_port. The IPC and HTCP protocols are used for caches to communicate
between themselves rather than by Web servers and clients themselves. To cache
multicasts, use ntast _gr oups.

To let clients connect to your Squid server, you need to give them permission to do
so. Unlike a Web server, Squid is not entirely generous with its resources. In the
simple case, we can just use a couple of subnet/netmask or CIDR (Classless
Internet Domain Routing) patterns to control permissions:

Listing 12. Simple Squid access permissions

http_access deny 10.0. 1.0/ 255. 255. 255.0
http_access allow 10.0.0.0/8
i cp_access allow 10.0.0.0/8

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 15

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

You can use the acl directive to name access control lists (ACLs). You can name
sr ¢ ACLs that simply specify address ranges as in Listing 12, but you can also
create other types of ACLs. For example:

Listing 13. Fine-tuned access permissions

acl nynetwork src 192. 168/ 16

acl asp urlpath_regex \.asp$

acl bad_ports port 70 873

acl javascript rep_mne_type -i “application/x-javascript$

what HTTP access to all ow cl asses

http_access deny asp # don't cache active server pages
http_access deny bad_ports # don't cache gopher or rsync

http_access deny javascri pt # don't cache javascript content
http_access al |l ow mynet wor k # al |l ow LAN everythi ng not denied

Listing 13 shows only a small subset of the available ACL types. See a sample
squid.conf for examples of many others. Or take a look at the Access control
documentation (Chapter 6) in the Squid User's Guide (see Resources for a link).

In Listing 13, we decide not to cache URLSs that end with .asp (probably dynamic
content), not to cache ports 70 and 873, and not to cache returned JavaScript
objects. Other than what is denied, machines on the LAN (the /16 range given) will
have all their requests cached. Notice that each ACL defined has a unique, but
arbitrary, name (use names that make sense; Squid does not reserve the names).

Caching modes

The simplest way to run Squid is in proxy mode. If you do this, clients must be
explicitly configured to use the cache. Web browser clients have configuration
screens that allow them to specify a proxy address and port rather than a direct
HTTP connection. This setup makes configuring Squid very simple, but it makes
clients do some setup work if they want to benefit from the Squid cache.

You can also configure Squid to run as a transparent cache. To do this, you need to
either configure policy-based routing (outside of Squid itself, using i pchai ns or

I pfilter)oruse your Squid server as a gateway. Assuming you can direct
external requests via the Squid server, Squid needs to be configured as follows. You
may need to recompile Squid with the - - enabl e-i pf -t ranspar ent option;
however, in most Linux installations, this should already be fine. To configure the
server for transparent caching (once it gets the redirected packets), add something
like Listing 14 to your squid.conf:

Listing 14. Configuring Squid for transparent caching

htt pd_accel _host virtual
htt pd_accel _port 80

Web services
Page 12 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

htt pd_accel _with_proxy on
htt pd_accel _uses_host header on

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 15

http://www.ibm.com/legal/copytrade.shtml

developerWorks® ibm.com/developerWorks

Resources

Learn

* Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

» Atthe LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

» Get more information on configuring Apache 2.x with mod_ssl.

* Read the tutorial "Customizing Apache for maximum performance”
(developerWorks, June 2002) to learn how to tweak Apache for particular
environments and needs.

» The chapter on Access Control and Access Control Operators in the Squid
User's Guide describes the available ACL types.

e TCP/IP Network Administration, Third Edition by Craig Hunt (O'Reilly, April
2002) is an excellent resource on Linux networking.

» The Linux Users Groups WorldWide home page lists 700 Linux user groups
around the world. Many LUGs have local and distance study groups for LPI
exams.

» The Linux Documentation Project has a variety of useful documents, especially
its HOWTOs.

* In the developerWorks Linux zone, find more resources for Linux developers.
« Stay current with developerWorks technical events and Webcasts.
Get products and technologies
» Download the latest Apache Web server.
» Download Squid and additional Squid documentation.

* Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

« With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss
» Participate in the discussion forum for this content.

* Check out developerWorks blogs and get involved in the developerWorks
community.

Web services
Page 14 of 15 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org/en/lpic.html
http://httpd.apache.org/docs/2.0/mod/mod_ssl.html
http://www.ibm.com/developerworks/linux/edu/wa-dw-waapache-i.html
http://squid-docs.sourceforge.net/latest/html/c1389.html
http://www.oreilly.com/catalog/tcp3/index.html
http://lugww.counter.li.org/
http://www.tldp.org/
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://httpd.apache.org/download.cgi
http://www.squid-cache.org/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml

ibm.com/developerWorks developerWorks®

About the author

David Mertz

David Mertz thinks that artificial languages are perfectly natural, but natural
languages seem a bit artificial. You can reach David at mertz@gnosis.cx; you can
investigate all aspects of his life at his personal Web page. Check out his book, Text

Processing in Python. Suggestions and recommendations on past or future columns
are welcome.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Web services
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 15

mailto:mertz@gnosis.cx
http://gnosis.cx/dW/
http://gnosis.cx/TPiP/
http://gnosis.cx/TPiP/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	About Apache and Squid
	Apache Web server
	Squid proxy server
	Other resources

	Implementing a Web server
	A swarm of daemons
	Including configuration files
	Log files

	Maintaining a Web server
	Virtual hosts, multi-homing, and per-directory options
	Limiting Web access

	Implementing a proxy server
	Installing and running Squid
	Ports, IP addresses, http_access, and ACLs
	Caching modes

	Resources
	About the author
	Trademarks

