
LPI exam 102 prep: Kernel
Junior Level Administration (LPIC-1) topic 105

Skill Level: Intermediate

Ian Shields (ishields@us.ibm.com)
Senior Programmer
IBM

21 Mar 2006

In this tutorial, Ian Shields begins preparing you to take the Linux Professional
Institute® Junior Level Administration (LPIC-1) Exam 102. In this first in a series of
nine tutorials, Ian introduces you to the kernel on Linux®. By the end of this tutorial,
you will know how to build, install, and query a Linux kernel and its kernel modules.

Section 1. Before you start

Learn what these tutorials can teach you and how you can get the most from them.

About this series

The Linux Professional Institute (LPI) certifies Linux system administrators at two
levels: junior level (also called "certification level 1") and intermediate level (also
called "certification level 2"). To attain certification level 1, you must pass exams 101
and 102; to attain certification level 2, you must pass exams 201 and 202.

developerWorks offers tutorials to help you prepare for each of the four exams. Each
exam covers several topics, and each topic has a corresponding self-study tutorial
on developerWorks. For LPI exam 102, the nine topics and corresponding
developerWorks tutorials are:

Table 1. LPI exam 102: Tutorials and topics

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 26

mailto:ishields@us.ibm.com
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org
http://www.ibm.com/legal/copytrade.shtml

LPI exam 102 topic developerWorks tutorial Tutorial summary

Topic 105 LPI exam 102 prep:
Kernel

(This tutorial). Learn how to
install and maintain Linux
kernels and kernel modules.
See detailed objectives below.

Topic 106 LPI exam 102 prep:
Boot, initialization, shutdown,
and runlevels

Coming soon.

Topic 107 LPI exam 102 prep:
Printing

Coming soon.

Topic 108 LPI exam 102 prep:
Documentation

Coming soon.

Topic 109 LPI exam 102 prep:
Shells, scripting, programming
and compiling

Coming soon.

Topic 111 LPI exam 102 prep:
Administrative tasks

Coming soon.

Topic 112 LPI exam 102 prep:
Networking fundamentals

Coming soon.

Topic 113 LPI exam 102 prep:
Networking services

Coming soon.

Topic 114 LPI exam 102 prep:
Security

Coming soon.

To pass exams 101 and 102 (and attain certification level 1), you should be able to:

• Work at the Linux command line

• Perform easy maintenance tasks: help out users, add users to a larger
system, back up and restore, and shut down and reboot

• Install and configure a workstation (including X) and connect it to a LAN,
or connect a stand-alone PC via modem to the Internet

To continue preparing for certification level 1, see the developerWorks tutorials for
LPI exams 101 and 102, as well as the entire set of developerWorks LPI tutorials.

The Linux Professional Institute does not endorse any third-party exam preparation
material or techniques in particular. For details, please contact info@lpi.org.

About this tutorial

Welcome to "Kernel," the first of nine tutorials designed to prepare you for LPI exam

developerWorks® ibm.com/developerWorks

Kernel
Page 2 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/lpi/101.html?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+topic&search_flag=true&type_by=Tutorials&show_abstract=true&start_no=1&sort_by=Title&end_no=100&show_all=false&S_TACT=105AGX03&S_CMP=tut
mailto:info@lpi.org
http://www.ibm.com/legal/copytrade.shtml

102. In this tutorial, you learn how to build, install, and query a Linux kernel and its
kernel modules.

This tutorial is organized according to the LPI objectives for this topic. Very roughly,
expect more questions on the exam for objectives with higher weight.

Table 2. Kernel: Exam objectives covered in this tutorial

LPI exam objective Objective weight Objective summary

1.105.1
Manage and query kernel and
kernel modules at runtime

Weight 4 Learn to query and manage a
kernel and kernel-loadable
modules.

1.105.2
Reconfigure, build, and install
a custom kernel and kernel
modules

Weight 3 Learn to customize, build, and
install a kernel and
kernel-loadable modules from
source.

Prerequisites

To get the most from this tutorial, you should have a basic knowledge of Linux and a
working Linux system on which to practice the commands covered in this tutorial.

This tutorial builds on content covered in previous tutorials in this LPI series, so you
may want to first review the tutorials for exam 101. In particular, you should be very
familiar with the material from LPI exam 101 prep:
Hardware and architecture tutorial.

Different versions of a program may format output differently, so your results may
not look exactly like the listings and figures in this tutorial.

Section 2. Runtime kernel management

This section covers material for topic 1.105.1 for the Junior Level Administration
(LPIC-1) exam 102. The topic has a weight of 4.

In this section, learn how to:

• Use command-line utilities to get information about the currently running
kernel and kernel modules

• Manually load and unload kernel modules

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 26

http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=asc&lcl_sort_order=asc&search_by=lpi+exam+101&search_flag=true&type_by=Tutorials&show_abstract=true&sort_by=Title&end_no=100&show_all=false
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1101-i.html?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/legal/copytrade.shtml

• Determine when modules can be unloaded

• Configure the system to load modules by names other than their file name

Technically, Linux is the kernel of your system. The kernel provides a framework for
applications to run and use various hardware devices. It is low-level code that deals
with hardware interfaces, scheduling, and memory management among other
things. Many people refer to a whole system as GNU/Linux because many of the
tools that make most distributions usable come from the GNU project of the Free
Software Foundation. Nevertheless, you will often just see "Linux" instead of
"GNU/Linux."

uname

The uname command prints information about your system and its kernel. Listing 1
shows the various options for uname and the resulting information; each option is
defined in Table 3.

Listing 1. The uname command

ian@pinguino:~$ uname
Linux
ian@pinguino:~$ uname -s
Linux
ian@pinguino:~$ uname -n
pinguino
ian@pinguino:~$ uname -r
2.6.12-10-386
ian@pinguino:~$ uname -v
#1 Mon Jan 16 17:18:08 UTC 2006
ian@pinguino:~$ uname -m
i686
ian@pinguino:~$ uname -o
GNU/Linux
ian@pinguino:~$ uname -a
Linux pinguino 2.6.12-10-386 #1 Mon Jan 16 17:18:08 UTC 2006 i686 GNU/Linux

Table 3. Options for uname

Option Description

-s Print the kernel name.
This is the default if no
option is specified.

-n Print the nodename or
hostname.

-r Print the release of the
kernel. This option is
often used with
module-handling
commands.

developerWorks® ibm.com/developerWorks

Kernel
Page 4 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

-v Print the version of the
kernel.

-m Print the machine's
hardware (CPU) name.

-o Print the operating
system name.

-a Print all of the above
information.

Listing 1 is from an Ubuntu system running on an Intel® CPU. The uname command
is available on most UNIX® and UNIX-like systems as well as Linux. The information
printed will vary by Linux distribution and version as well as by the type of machine
you are running on. Listing 2 shows the output from an AMD Athlon 64 system
running Fedora Core 4 and, for comparison, an Apple PowerBook.

Listing 2. Using uname with another system

Linux attic4 2.6.14-1.1656_FC4 #1 Thu Jan 5 22:13:55 EST 2006 x86_64
x86_64 x86_64 GNU/Linuxfilesystem

Darwin Ian-Shields-Computer.local 7.9.0 Darwin Kernel Version 7.9.0:
Wed Mar 30 20:11:17 PST 2005; root:xnu/xnu-517.12.7.obj~1/RELEASE_PPC
Power Macintosh powerpc

Kernel modules

The kernel manages many of the low-level aspects of your system, including
hardware and interfaces. With a large variety of possible hardware and several
different file systems, a kernel that supported everything would be rather large.
Fortunately, kernel modules allow you to load support software such as hardware
drivers or file systems when needed, so you can start your system with a small
kernel and then load other modules as needed. Often the loading is automatic, such
as when USB devices are plugged in.

The remainder of this section looks at the commands and configuration for kernel
modules.

The commands for tasks such as loading or unloading modules require root
authority. The commands for displaying information about modules can usually be
run by general users. However, since they reside in /sbin, they are not usually on a
non-root user's path, so you will probably have to use full path names if you are not
root.

lsmod

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 26

http://www.ibm.com/legal/copytrade.shtml

Use the lsmod command to display the modules that are currently loaded on your
system, as shown in Listing 3. Your output is likely to be different, although you
should see some common entries.

Listing 3. Displaying kernel modules with lsmod

[ian@attic4 ~]$ /sbin/lsmod
Module Size Used by
nvnet 74148 0
nvidia 4092336 12
forcedeth 24129 0
md5 4161 1
ipv6 268737 12
parport_pc 29189 1
lp 13129 0
parport 40969 2 parport_pc,lp
autofs4 29637 1
sunrpc 168453 1
ipt_REJECT 5825 1
ipt_state 1985 3
ip_conntrack 42009 1 ipt_state
iptable_filter 3137 1
ip_tables 19521 3 ipt_REJECT,ipt_state,iptable_filter
dm_mod 58613 0
video 16069 0
button 4161 0
battery 9541 0
ac 4933 0
ohci_hcd 26977 0
ehci_hcd 41165 0
i2c_nforce2 7105 0
i2c_core 21825 1 i2c_nforce2
shpchp 94661 0
snd_intel8x0 34945 1
snd_ac97_codec 76217 1 snd_intel8x0
snd_seq_dummy 3781 0
snd_seq_oss 37569 0
snd_seq_midi_event 9409 1 snd_seq_oss
snd_seq 62801 5 snd_seq_dummy,snd_seq_oss,snd_seq_midi_event
snd_seq_device 9037 3 snd_seq_dummy,snd_seq_oss,snd_seq
snd_pcm_oss 51569 0
snd_mixer_oss 18113 1 snd_pcm_oss
snd_pcm 100553 3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss
snd_timer 33733 2 snd_seq,snd_pcm
snd 57669 11 snd_intel8x0,snd_ac97_codec,snd_seq_oss,snd_seq,
snd_seq_device,snd_pcm_oss,snd_mixer_oss,snd_pcm,snd_timer
soundcore 11169 1 snd
snd_page_alloc 9925 2 snd_intel8x0,snd_pcm
floppy 65397 0
ext3 132681 3
jbd 86233 1 ext3
sata_nv 9541 0
libata 47301 1 sata_nv
sd_mod 20545 0
scsi_mod 147977 2 libata,sd_mod
[ian@attic4 ~]$

You can see that this system has many loaded modules. Most of these are supplied
with the kernel. However, some, such as the nvnet, nvidia, and sata_nv modules
from NVIDIA Corporation include proprietary code and are not supplied as part of a
standard kernel. In this way, the modular approach allows proprietary code to be
plugged in to an open source kernel. Assuming the vendor license permits it, a Linux

developerWorks® ibm.com/developerWorks

Kernel
Page 6 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

distributor may add proprietary modules to a distribution, saving you the effort of
getting them directly from a vendor and helping to ensure that you have the
appropriate levels.

From Listing 3, you can also see that modular support extends to devices such as
video, SATA and SCSI hard drives, floppy disks, and sound cards, as well as to
networking features such as IPV6, file system support such as ext3, and Sun remote
procedure call (RPC).

In addition to the module name, lsmod also shows the module size and the number
of users of the module. If the module is used by any other modules, these are listed.
So, for example, the soundcore module is used by the snd module, which in turn is
used by several other sound modules.

modinfo

The modinfo command displays information about one or more modules. As shown
in Listing 4, the information includes the full path to the file, the author, license, any
parameters that the module might accept, version, dependencies, and other
information.

Listing 4. Basic module information

[ian@attic4 ~]$ /sbin/modinfo floppy
filename: /lib/modules/2.6.12-1.1456_FC4/kernel/drivers/block/floppy.ko
author: Alain L. Knaff
license: GPL
alias: block-major-2-*
vermagic: 2.6.12-1.1456_FC4 686 REGPARM 4KSTACKS gcc-4.0
depends:
srcversion: 2633BC999A0747D8D215F1F
parm: FLOPPY_DMA:int
parm: FLOPPY_IRQ:int
parm: floppy:charp
[ian@attic4 ~]$ /sbin/modinfo sata_nv
filename: /lib/modules/2.6.12-1.1456_FC4/kernel/drivers/scsi/sata_nv.ko
author: NVIDIA
description: low-level driver for NVIDIA nForce SATA controller
license: GPL
version: 0.6
vermagic: 2.6.12-1.1456_FC4 686 REGPARM 4KSTACKS gcc-4.0
depends: libata
alias: pci:v000010DEd0000008Esv*sd*bc*sc*i*
alias: pci:v000010DEd000000E3sv*sd*bc*sc*i*
alias: pci:v000010DEd000000EEsv*sd*bc*sc*i*
alias: pci:v000010DEd00000054sv*sd*bc*sc*i*
alias: pci:v000010DEd00000055sv*sd*bc*sc*i*
alias: pci:v000010DEd00000036sv*sd*bc*sc*i*
alias: pci:v000010DEd0000003Esv*sd*bc*sc*i*
alias: pci:v000010DEd*sv*sd*bc01sc01i*
srcversion: 3094AD48C1B869BCC301E9F

In Listing 4, notice in the lines giving the module filenames that these filenames end
in a .ko suffix. This distinguishes modules for 2.6 kernels from other object files and

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 26

http://www.ibm.com/legal/copytrade.shtml

from modules for 2.4 and earlier kernels, which used the same .o suffix as other
object files.

You will also notice that the module path include the kernel version. For example,
/lib/modules/2.6.12-1.1456_FC4/kernel/drivers/block/floppy.ko includes
2.6.12-1.1456_FC4 as a path element. This is the same value emitted by uname
-r. Kernel modules are specific to a given kernel, and this structure manages that
relationship.

On 2.6 kernels you can also use modinfo to limit requests to specific information
about a module. Use the -F option to extract a single information type, such as
parm, description, license, filename, or alias. Use the command multiple times with
different options if you need different types of information. On 2.4 kernels,
parameters such as -p extracted parameter information. The current modinfo
command also supports the older parameters. Listing 5 shows some examples.

Listing 5. Specific module information

[ian@attic4 ~]$ /sbin/modinfo -F parm snd
cards_limit:Count of auto-loadable soundcards.
major:Major # for sound driver.
[ian@attic4 ~]$ /sbin/modinfo -F license nvidia floppy
NVIDIA
GPL
[ian@attic4 ~]$ /sbin/modinfo -p snd
major:Major # for sound driver.
cards_limit:Count of auto-loadable soundcards.

Using your Linux skills

You may use some of the techniques covered in the tutorial "LPI exam 101 prep
(topic 103): GNU and UNIX commands" to extract information such as the number of
parameters accepted by any module that accepts parameters. Listing 6 shows an
example.

Listing 6. Number of parameters per module

[ian@attic4 ~]$ for n in `/sbin/lsmod | tail +2 | cut -d " " -f1`;
> do echo "$n $(/sbin/modinfo -p $n |wc -l)" | grep -v " 0$"; done
nvnet 12
forcedeth 1
parport_pc 5
dm_mod 1
ohci_hcd 2
ehci_hcd 2
shpchp 3
snd_intel8x0 7
snd_ac97_codec 1
snd_seq_dummy 2
snd_seq_oss 2
snd_seq 7
snd_pcm_oss 3
snd_pcm 2
snd_timer 1
snd 2

developerWorks® ibm.com/developerWorks

Kernel
Page 8 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1103-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/legal/copytrade.shtml

snd_page_alloc 1
scsi_mod 6

rmmod

If a module's use count is 0, you may safely remove it. For example, you might do
this in preparation for loading an updated version. This is a great feature of a
modular kernel because you do not always have to reboot just to update support for
one or another particular device. To remove a mod, use the rmmod command along
with the module name as shown in Listing 7.

Listing 7. Removing a module for a running system

[root@attic4 ~]# rmmod floppy

Consult the man pages for other options available with rmmod.

insmod and modprobe

Once you have removed a module, you may need to reload it. You can do this using
the insmod command, which takes the full path name of the module to be reloaded,
along with any module options that may be required. If you use this command, you
will probably want to use command substitution for generating the filename. Two
ways of doing this are shown in Listing 8.

Listing 8. Loading a module using insmod

[root@attic4 ~]# insmod /lib/modules/`uname
-r`/kernel/drivers/block/floppy.ko
[root@attic4 ~]# rmmod floppy
[root@attic4 ~]# insmod $(modinfo -F filename floppy)

The second form above saves you the need to remember which subdirectory
(drivers/block in this case) a module is located in, but there is an even better way to
load a module. The modprobe command provides a higher-level interface that
operates with the module name instead of file path. It also handles loading additional
modules upon which a module depends, and can remove modules as well as load
them.

Listing 9 shows how to use modprobe to remove the vfat module, along with the
fat module that uses it. It then shows what the system would do if the module were
reloaded, and finally the result of reloading the module. Note that the -v option is
specified to obtain verbose output; otherwise, modprobe (and the underlying
insmod command) will display only error messages from the module itself. Between

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 26

http://www.ibm.com/legal/copytrade.shtml

each step, the output of lsmod is piped through grep to show whether either the
vfat or fat module is loaded or not.

Listing 9. Loading a module using modprobe

[root@lyrebird root]# modprobe -r vfat
vfat: Device or resource busy
[root@lyrebird root]# lsmod | grep fat
vfat 13132 1
fat 38744 0 [vfat]
[root@lyrebird root]# umount /windows/D
[root@lyrebird root]# modprobe -r vfat
[root@lyrebird root]# modprobe -v --show vfat
/sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o
/sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o
[root@lyrebird root]# lsmod | grep fat
[root@lyrebird root]# modprobe -v vfat
/sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o
Using /lib/modules/2.4.21-37.0.1.EL/kernel/fs/fat/fat.o
Symbol version prefix ''
/sbin/insmod /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o
Using /lib/modules/2.4.21-37.0.1.EL/kernel/fs/vfat/vfat.o
[root@lyrebird root]# lsmod | grep fat
vfat 13132 0 (unused)
fat 38744 0 [vfat]

depmod

You have just seen that modprobe can handle the automatic loading of multiple
modules when some are dependent on others. The dependencies are kept in the
modules.dep file in the /lib/modules subdirectory for the appropriate kernel, as given
by the uname -r command. This file, along with several map files, is generated by
the depmod command. The -a (for all) is now optional.

The depmod command scans the modules in the subdirectories of /lib/modules for
the kernel you are working on and freshens the dependency information. An
example, along with the resulting changed files, is shown in Listing 10.

Listing 10. Using depmod to rebuild modules.dep

[root@lyrebird root]# date
Thu Mar 16 10:41:05 EST 2006
[root@lyrebird root]# depmod
[root@lyrebird root]# cd /lib/modules/`uname -r`
[root@lyrebird 2.4.21-37.0.1.EL]# ls -l mod*
-rw-rw-r-- 1 root root 54194 Mar 16 10:41 modules.dep
-rw-rw-r-- 1 root root 31 Mar 16 10:41 modules.generic_string
-rw-rw-r-- 1 root root 73 Mar 16 10:41 modules.ieee1394map
-rw-rw-r-- 1 root root 1614 Mar 16 10:41 modules.isapnpmap
-rw-rw-r-- 1 root root 29 Mar 16 10:41 modules.parportmap
-rw-rw-r-- 1 root root 65171 Mar 16 10:41 modules.pcimap
-rw-rw-r-- 1 root root 24 Mar 16 10:41 modules.pnpbiosmap
-rw-rw-r-- 1 root root 122953 Mar 16 10:41 modules.usbmap
[root@lyrebird 2.4.21-37.0.1.EL]# cd -
/root

developerWorks® ibm.com/developerWorks

Kernel
Page 10 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

You can customize the behavior of modprobe and depmod using the configuration
file /etc/modules.conf. This is commonly used to alias module names and to specify
commands that should be run after a module is loaded or before it is unloaded.
However, an extensive range of other configuration can be done. Listing 11 shows
an example of /etc/modules.conf. Consult the man page for modules.conf for more
details.

Listing 11. Example /etc/modules file

[root@lyrebird root]# cat /etc/modules.conf
alias eth0 e100
alias usb-controller usb-uhci
alias usb-controller1 ehci-hcd
alias sound-slot-0 i810_audio
post-install sound-slot-0 /bin/aumix-minimal -f /etc/.aumixrc -L >/dev/null 2>&1 || :
pre-remove sound-slot-0 /bin/aumix-minimal -f /etc/.aumixrc -S >/dev/null 2>&1 || :

You should also be aware that some systems use another configuration file called
modprobe.conf, while others store module configuration information in the
/etc/modules.d directory. You may also find a file called /etc/modules on some
systems; this file contains the names of kernel modules that should be loaded at
boot time.

USB modules

When you hot plug a USB device into your Linux system, the kernel must determine
which modules to load to handle the device. This is usually done for you by a hot
plug script that uses the usbmodules command to find the appropriate module. You
can also run usbmodules (as root) to see for yourself. Listing 12 shows an
example.

Listing 12. USB modules

root@pinguino:~# lsusb
Bus 005 Device 004: ID 1058:0401 Western Digital Technologies, Inc.
Bus 005 Device 003: ID 054c:0220 Sony Corp.
Bus 005 Device 001: ID 0000:0000
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 001 Device 003: ID 04b3:310b IBM Corp. Red Wheel Mouse
Bus 001 Device 001: ID 0000:0000
root@pinguino:~# usbmodules --device /proc/bus/usb/005/003
usb-storage
root@pinguino:~# usbmodules --device /proc/bus/usb/001/003
usbmouse
usbhid

The next section shows you how to build and configure a custom kernel.

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 26

http://www.ibm.com/legal/copytrade.shtml

Section 3. Customize and build kernels and kernel
modules

This section covers material for topic 1.105.2 for the Junior Level Administration
(LPIC-1) exam 102. The topic has a weight of 3.

In this section, learn how to:

• Customize the current kernel configuration

• Build a new kernel and appropriate kernel modules

• Install a new kernel and any modules

• Ensure that the boot manager can locate the new kernel and associated
files

As you learned in the previous section, Runtime kernel management, the kernel
provides the low-level support for your system hardware and file systems. A modern
kernel image usually contains only essential functions, but is configured to support
additional functions that you might need through the use of kernel modules. The
additional support is loaded only when needed, for example when a device is
plugged in or otherwise enabled.

The modular code becomes an integral part of the kernel, dynamically extending the
kernel functions. If the functions of a loaded kernel module have not been used for
several minutes, the kernel can voluntarily disassociate it from the rest of the kernel
and unload it from memory through a process known as autocleaning.

Without kernel modules, your running kernel, which is loaded from disk as a single
binary file, would have to contain all the functionality you might possibly ever need.
You would also need to build a completely new kernel every time you wanted to add
functionality to your system.

You cannot put everything in a module, however. At a bare minimum, the kernel
image that is loaded must be able to mount your root file system. But, as you
learned in the tutorial "LPI exam 101 prep (topic 102): Linux installation and package
management," your boot loader can load an initial RAM disk (or initrd), which may
contain the modules necessary to mount the root file system. Nevertheless, the
kernel image must at least contain support for the RAM file system used in the initial
RAM disk. If it does not, your system will not boot.

Once your system has bootstrapped itself this far, it proceeds to mount the root file
system and then start the other initialization processes. After a few seconds, the

developerWorks® ibm.com/developerWorks

Kernel
Page 12 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/legal/copytrade.shtml

system is up and ready for you to use. The kernel, however, remains in control
awaiting requests to perform work for user processes and scheduling the system
resources among the tasks that require them.

Modular kernels work well in modern systems with plenty of RAM and disk space.
However, you may have a new piece of hardware, such as a video card or storage
system, that is not supported by the kernel that came with your distribution. Indeed,
some drivers contain proprietary code that is said to taint a pure Linux kernel, so
some distributors will not include it, even if the vendor license terms permit it to be
distributed by your chosen distributor. In this case, you will need to at least build new
modules, and possibly even build a new kernel.

Linux can be used in many environments, from embedded systems such as mobile
phones, to networking devices such as routers, to set-top boxes as well as more
traditional computing environments. Some of these devices use a kernel that is
customized to support only those functions that the system is intended to support.
For example, a system intended to be a diskless firewall probably does not need
support for any file system other than the read-only file system from which it loaded,
yet it may need support for advanced networking hardware that is not part of a
standard kernel. Again, a custom kernel will be required.

Source packages

The ultimate source for the Linux kernel is the Linux Kernel Archives (see Resources
for a link). Unless you already know what you are doing, you should use a kernel
package from your Linux distribution, because your distributor may have added
custom patches. If you are already familiar with obtaining and extracting source
packages, review the tutorial "LPI exam 101 prep (topic 102): Linux installation and
package management." As with anything that may change your system, make
backups first so that you can recover if things go wrong.

If you download source from the public kernel archives, you will download a
compressed file, and you will need to decompress it using gzip or bzip2,
according to whether you download the .gz or the .bz2 version of the kernel source.
The pub/linux/kernel/ directory on the download server has a directory for each
kernel version, such as 2.4, 2.5, or 2.6. At the date of this writing, the latest bzip2
version of the 2.6 kernel is linux-2.6.15.tar.bz2.

In that kernel directory, you will also see a corresponding ChangeLog-2.6.15.6 file
that describes changes in this version, and a patch-2.6.15.bz2, which is a smaller file
that allows you to patch the prior version of source to bring it up to 2.6.15 level. You
will also notice signature files that you may use to verify that your downloaded file
was not corrupted, either accidentally or maliciously.

The compressed source is normally uncompressed in /usr/src, and it creates a new

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 26

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/legal/copytrade.shtml

subdirectory for the kernel version, such as linux-2.6.15, containing the tree of files
needed to build your kernel. If you already have such a directory, you may want to
back it up or rename it before unpacking the new kernel source. This will ensure that
you can go back if you need to, and also that you will not have stray files that should
not be in your kernel source tree. You need about 40MB of disk space for the tarball
and about 350MB for the expanded source code.

Some distributors, notably Red Hat, now distribute the kernel headers and source
necessary for building kernel modules as a kernel development package.
Documentation may be in a separate kernel documentation package. These are
designed for and sufficient for building modules, such as a proprietary vendor
graphics card module, but they are not sufficient for rebuilding a custom kernel. Your
distribution should have information about how to rebuild a kernel and how the
source can be obtained. Check for documentation such as release notes.

Suppose you use FTP or HTTP to download the kernel-2.6.15-1.1833_FC4.src.rpm
source RPM from the pub/fedora/linux/core/updates/4/SRPMS/ at
download.fedora.redhat.com, and the file is in the /root directory. Note that version
numbers used here will probably be different for your system, so make sure you get
the updated version of source corresponding to your installed kernel. Now, for
Fedora, you must install the source RPM, then switch to the /usr/src/redhat/SPECS
directory, and finally build the source RPM in order to create the Linux kernel source
tree as shown in Listing 13.

Listing 13. Creating the kernel source tree for Fedora Core

[root@attic4 ~]# uname -r
2.6.15-1.1833_FC4
[root@attic4 ~]# rpm -Uvh kernel-2.6.15-1.1833_FC4.src.rpm

1:kernel ### [100%]
[root@attic4 ~]# cd /usr/src/redhat/SPECS
[root@attic4 SPECS]# rpmbuild -bp --target $(arch) kernel-2.6.spec
Building target platforms: x86_64
Building for target x86_64
Executing(%prep): /bin/sh -e /var/tmp/rpm-tmp.23188
+ umask 022
+ cd /usr/src/redhat/BUILD
+ LANG=C
+ export LANG
+ unset DISPLAY
+ '[' '!' -d kernel-2.6.15/vanilla ']'
+ cd /usr/src/redhat/BUILD
+ rm -rf kernel-2.6.15
+ /bin/mkdir -p kernel-2.6.15
+ cd kernel-2.6.15
+ /usr/bin/bzip2 -dc /usr/src/redhat/SOURCES/linux-2.6.15.tar.bz2
+ tar -xf -
...
+ echo '# x86_64'
+ cat .config
+ perl -p -i -e 's/^SUBLEVEL.*/SUBLEVEL = 15/' Makefile
+ perl -p -i -e 's/^EXTRAVERSION.*/EXTRAVERSION = -prep/' Makefile
+ find . -name '*.orig' -o -name '*~' -exec rm -f '{}' ';'
+ exit 0

developerWorks® ibm.com/developerWorks

Kernel
Page 14 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Linux kernel source for Fedora is now located in
/usr/src/redhat/BUILD/kernel-2.6.15/linux-2.6.15. By convention, the /linux-2.6.15
tree is often moved to /usr/src and symbolically linked to /usr/src/linux, as shown in
Listing 14. This is not strictly necessary, but it's easier to follow along with references
that assume the kernel source tree will be in .usr./src/linux.

Listing 14. Moving the source tree to ./usr/src

[root@attic4 SPECS]# mv ../BUILD/kernel-2.6.15/linux-2.6.15 /usr/src
[root@attic4 SPECS]# cd /usr/src
[root@attic4 src]# ln -s linux-2.6.15 linux
[root@attic4 src]# ls -ld lin*
lrwxrwxrwx 1 root root 12 Mar 20 18:23 linux -> linux-2.6.15
drwxr-xr-x 20 root root 4096 Mar 20 18:13 linux-2.6.15

Before you attempt to build anything, review the Changes file that is located in the
Documentation directory. Among other things, it lists the minimum levels of various
software packages that you need to build a kernel. Make sure that you have these
packages installed.

You may notice Makefile and .config among the files shown in Listing 13. The make
file contains several make targets for tasks such as configuring the kernel options,
building the kernel and its modules, and installing the modules and building RPM or
deb packages. More recent kernel sources allow you to use make help for brief
help on each target. For older systems, you may need to consult the documentation
or examine the make file. Listing 15 shows partial output for make help.

Listing 15. Help for kernel building make file

[ian@attic4 linux-2.6.15]$ make help
Cleaning targets:
clean - remove most generated files but keep the config
mrproper - remove all generated files + config + various backup files

Configuration targets:
config - Update current config utilising a line-oriented program
menuconfig - Update current config utilising a menu based program
xconfig - Update current config utilising a QT based front-end
gconfig - Update current config utilising a GTK based front-end
oldconfig - Update current config utilising a provided .config as base
randconfig - New config with random answer to all options
defconfig - New config with default answer to all options
allmodconfig - New config selecting modules when possible
allyesconfig - New config where all options are accepted with yes
allnoconfig - New minimal config

Other generic targets:
all - Build all targets marked with [*]

* vmlinux - Build the bare kernel
* modules - Build all modules
modules_install - Install all modules
dir/ - Build all files in dir and below
dir/file.[ois] - Build specified target only

...

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 26

http://www.ibm.com/legal/copytrade.shtml

Configuration

The .config file in your kernel build directory contains configuration information for
your kernel, including the target machine environment, the features to be included,
and whether a feature should be compiled into the kernel or built as a module.
Creating a .config file is the first step to building or rebuilding a kernel. You create it
using one of the configuration targets in the make file.

The main configuration options are:

config
The config target uses a command-line interface to obtain answers to many
questions to either build or update your .config file. With the advent of the
menu-based configuration targets, this command-line interface is rarely used
today.

menuconfig
The menuconfig target uses an ncurses-based, menu-based program to
create or update your .config file. You need only answer questions for items
you want to change. This approach has superseded the older config target.
You run this in a terminal window either remotely or locally.

xconfig
The xconfig target uses a graphical menu system based on a QT front-end,
like the one used with the KDE desktop.

gconfig
The gconfig target uses a graphical menu system based on a GTK front-end,
like the one used with the GNOME desktop.

oldconfig
The oldconfig target allows you to build a configuration using an existing
.config file, such as you might have from a previous build or another system.
For example, if you installed the kernel source for Fedora as described above,
you may copy the configuration file for your running system from
/lib/modules/$(uname -r)/build/.config to /usr/src/linux.
Once you've built it, you may use one of the menu configuration targets to
modify it if necessary.

Figure 1 shows what you might see if you run make menuconfig for a 2.4 series
kernel. Press Enter to descend into lower-level menus, and press Esc to return.
Help is available for most items. Either tab to the < Help > button and press Enter,
or simply type h. Press Esc to return to configuring.

Figure 1. Running make menuconfig on a 2.4 kernel

developerWorks® ibm.com/developerWorks

Kernel
Page 16 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Table 4 shows the various options for including features in the kernel, either built in
or as modules. When an option is highlighted, press the space bar to toggle between
the allowable choices for that feature. You can also press y to enable an option, n to
disable it, or m to have it compiled as a module if possible.

Table 4. Options for menuconfig

Option Description

[*] Feature will be built into
the kernel.

[] Feature will not be
included in the kernel.

<M> Feature will be built as
a kernel module.

< > Feature will not be
included in the kernel
but is capable of being
built as a module.

Figure 2 shows what you might see if you run make gconfig for a 2.6 series
kernel. Click the arrows to expand or collapse menu items. Help is displayed in a
lower pane.

Figure 2. Running make gconfig on a 2.6 kernel

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 26

http://www.ibm.com/legal/copytrade.shtml

The major configuration sections for a 2.6 kernel are described below. You may not
find all of these with 2.4 and earlier kernels, but this list gives you an overview of
where to find what.

Code maturity level options
This section contains an option that determines whether remaining options give
you a choice for code that is considered experimental. If you do not select this
option, then you will be able to select only options that are considered stable.
Be warned that functions you choose may or may not work at the current code
level on your system, so you might have a chance to help with debugging.

General setup
This section lets you include an identification string with your new kernel, along
with options for several kernel attributes that do not belong elsewhere but that
you must specify.

Loadable module support
This section contains an option that determines whether your kernel will
support modules and whether they may be automatically loaded and unloaded.
You should enable module support.

developerWorks® ibm.com/developerWorks

Kernel
Page 18 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Block layer
This section contains support for disks larger than 2TB, and allows you to
choose the type of disk scheduling that you would like.

Processor type and features
This section contains CPU-specific configuration options. Here you choose the
processor or processor family that your kernel will support, as well as whether
or not to enable access to various processor features. Be sure to enable
symmetric multi-processing support if you have more than one CPU or a
hyperthreaded CPU. Generally, you should enable the MTRR option to allow
better graphic performance with AGP or PCI video cards.

Power management options
This section contains several power management options. These are
particularly useful on laptops. Besides controlling power states, you will find
options here to control and monitor such things as temperatures or fan states.

Bus options (PCI etc.)
This section contains options for buses supported by your system, such as
PCI, PCI Express, and PC Card buses. You can also enable the /proc/pci file
system here, although you should generally use lspci instead.

Executable file formats / Emulations
This section contains options for supporting various binary file formats. You
should enable ELF binary support. You may also enable support for DOS
binaries to run under DOSEMU, as well as wrapper-driven binaries such as
Java™, Python, Emacs-Lisp, and so on. Finally, for a 64-bit system that
supports 32-bit emulation, you probably want to enable 32-bit binary support.

Networking
The networking section is large. Here you can enable basic sockets and
TCP/IP networking, as well as packet filtering, bridging, routing, and support for
a variety of protocols such as IPV6, IPX, Appletalk, and X.25. You can also
enable wireless, infrared, and amateur radio support here.

Device drivers
This section is also very large. Here you enable support for most of your
hardware devices, including IDE/ATAPI or SCSI hard drives and flash memory
devices. Enable DMA for your IDE devices; otherwise, they will work in the
slower PIO mode. If you want support for multiple devices such as RAID or
LVM, this is where you enable it. You can also configure parallel port support
here if you want parallel printer support. This is also where you configure a vast
range of possible networking devices to support the networking protocols you
configured above. You will also find support here for audio and video capture
devices, USB and IEEE 1384 (Firewire) devices, as well as a variety of
hardware monitoring devices. Under the character devices subsection, you will

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 26

http://www.ibm.com/legal/copytrade.shtml

probably want to enable parallel print support and direct rendering support.

Firmware drivers
This section contains a few options related to BIOS setting and updating, such
as using the Dell System Management functions on certain Dell systems.

File systems
This section is for configuring the file systems that you want your kernel to
support, either compiled in or as modules. You will also find file systems here
for removable media such as diskettes and CD or DVD devices, along with
support for networked file systems such as NFS, SMB, or CIFS. Support for a
variety of partitions and Native Language Support is found here too.

Instrumentation support
This section allows you to enable experimental profiling support for profiling
your system's activity.

Kernel hacking
This section allows you to enable kernel debugging and choose which features
will be enabled.

Security options
This section allows you to configure several security options and to enable and
configure SELinux (Security Enhanced Linux).

Cryptographic options
This section allows you to configure several cryptographic algorithms, such as
MD4, DES, and SHA256.

Library routines
This section allows you to decide whether certain CRC algorithms should be
compiled in or built as modules.

Building

Now that you've seen the major aspects of configuring a kernel, you're ready to build
one. If you are not sure of the state of your build tree, run make clean before
configuring your new kernel. For an even more extreme cleanup target, run make
mrproper; this will remove your .config file as well as some other files used by the
build process. If you do this and then need to restore a backed up .config file, you
will need to run make oldconfig before configuring.

While you are experimenting, you should give your new kernel a custom name so
you can easily identify it. Do this by setting a local version value and enabling the
option to automatically append version information to the version string under the

developerWorks® ibm.com/developerWorks

Kernel
Page 20 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

General setup section as shown in Figure 3.

Figure 3. Configuring a custom kernel

In the spirit of taking small steps, the examples in the remainder of this tutorial are
based on building a kernel with just the two changes shown in Figure 3.

In principle, the kernel does not require root authority to build, although you will need
root authority to install your new kernel. However, if you are using the package
installed by your distribution, you will probably have to run as root because of the file
and directory permissions that have been set up. You can practice in user mode by
downloading a kernel source tarball from the Linux kernel archives and unpacking it
in your home directory, or by making a copy of your kernel build tree and changing
the permissions to your userid.

To start building a 2.6 kernel, type make.

To start building a 2.4 kernel, run these three commands:
make dep
make bzImage
make modules

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 26

http://www.ibm.com/legal/copytrade.shtml

The first makes necessary dependency files. The second builds the kernel. And the
last builds your modules.

Running make on my AMD Athlon 3500+ system takes about a half hour to complete
the build from a clean start. Slower systems may take a couple of hours to complete
the job, so take a break or do something else while you wait. You will see progress
messages such as those in Listing 16 while the build is running.

Listing 16. Running make

[root@attic4 linux]# make
CHK include/linux/version.h
HOSTCC scripts/basic/fixdep
HOSTCC scripts/basic/split-include
HOSTCC scripts/basic/docproc
SPLIT include/linux/autoconf.h -> include/config/*
CC arch/x86_64/kernel/asm-offsets.s
GEN include/asm-x86_64/asm-offsets.h

...
LD [M] sound/usb/snd-usb-lib.ko
CC sound/usb/usx2y/snd-usb-usx2y.mod.o
LD [M] sound/usb/usx2y/snd-usb-usx2y.ko

Installing

When you have completed building your kernel, you still have a couple of steps to
go. First, you need to run make modules_install to install your kernel modules
in a new subdirectory of ./lib/modules.

If you need proprietary modules for a video card or network driver, as I need for my
nVidia graphics card and nForce 4 motherboard chipset, now is a good time to build
those modules using the vendor-supplied tools.

Finally, you need to run make install to install the new kernel and initial RAM
disk in /boot and update your boot loader configuration. These steps are illustrated in
Listing 17.

Listing 17. Installing the kernel and modules

[root@attic4 linux]# make modules_install
INSTALL arch/x86_64/crypto/aes-x86_64.ko
INSTALL arch/x86_64/kernel/cpufreq/acpi-cpufreq.ko
INSTALL arch/x86_64/kernel/microcode.ko
INSTALL arch/x86_64/oprofile/oprofile.ko
INSTALL crypto/aes.ko
INSTALL crypto/anubis.ko
INSTALL crypto/arc4.ko

...
[root@attic4 linux]# ls -lrt /lib/modules | tail -n 3
drwxr-xr-x 5 root root 4096 Mar 4 14:48 2.6.15-1.1831_FC4
drwxr-xr-x 5 root root 4096 Mar 20 18:52 2.6.15-1.1833_FC4
drwxr-xr-x 3 root root 4096 Mar 20 21:38 2.6.15-prep-Topic105
[root@attic4 linux]# sh /root/NFORCE-Linux-x86_64-1.0-0310-pkg1.run -a \
> -n -K -k 2.6.15-prep-Topic105

developerWorks® ibm.com/developerWorks

Kernel
Page 22 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Verifying archive integrity...OK
Uncompressing NVIDIA nForce drivers for Linux-x86_64 1.0-0310...................
[root@attic4 linux]# sh /root/NVIDIA-Linux-x86_64-1.0-8178-pkg2.run -a \
> -n -K -k 2.6.15-prep-Topic105
Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 1.0-8178.................
[root@attic4 linux]# make install
CHK include/linux/version.h
CHK include/linux/compile.h
CHK usr/initramfs_list

Kernel: arch/x86_64/boot/bzImage is ready (#2)
sh /usr/src/linux-2.6.15/arch/x86_64/boot/install.sh 2.6.15-prep-Topic105
arch/x86_64/boot/bzImage System.map "/boot"
[root@attic4 linux]# ls -lrt /boot | tail -n 6
-rw-r--r-- 1 root root 1743149 Mar 20 21:45 vmlinuz-2.6.15-prep-Topic105
lrwxrwxrwx 1 root root 28 Mar 20 21:45 vmlinuz -> vmlinuz-2.6.15-prep-Topic105
-rw-r--r-- 1 root root 980796 Mar 20 21:45 System.map-2.6.15-prep-Topic105
lrwxrwxrwx 1 root root 31 Mar 20 21:45 System.map -> System.map-2.6.15-prep-Topic105
-rw-r--r-- 1 root root 1318741 Mar 20 21:45 initrd-2.6.15-prep-Topic105.img
drwxr-xr-x 2 root root 4096 Mar 20 21:45 grub

Initial RAM disk

Notice that the build process automatically created the necessary initial RAM disk
(initrd) for you. If you ever need to create one manually, you do so using the
mkinitrd command. See the man pages for details.

Boot loaders

If everything worked correctly, the make install step should have also updated
your boot loader configuration. Some lines from mine are shown in Listing 18.

Listing 18. Updated GRUB configuration file

default=1
timeout=10
splashimage=(hd0,5)/boot/grub/splash.xpm.gz
password --md5 1y.uQRs1W$Sqs30hDB3GtE957PoiDWO.
title Fedora Core (2.6.15-prep-Topic105)

root (hd0,11)
kernel /boot/vmlinuz-2.6.15-prep-Topic105 ro root=LABEL=FC4-64 rhgb quiet
initrd /boot/initrd-2.6.15-prep-Topic105.img

title Fedora Core -x86-64 (2.6.15-1.1833_FC4)

The entry for the newly built kernel has been placed at the top, but the default entry
has been adjusted to remain as the previous default. If you use LILO instead, then
the grubby command that is used in the build script should have updated your LILO
configuration. If the configuration was not updated correctly for any reason, refer to
the tutorial "LPI exam 101 prep (topic 102): Linux installation and package
management," where you will find full instructions on setting up your boot loader.

One final note. You may wonder why the sample configuration added -Topic105,
yet the created files all had -prep-Topic105 instead. This is a Fedora safety
measure to prevent you from inadvertently destroying your live kernel. This is

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 26

http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/developerworks/linux/edu/l-dw-linux-lpic1102-i.html?S_TACT=105AGX03&S_CMP=HP
http://www.ibm.com/legal/copytrade.shtml

controlled by the EXTRAVERSION variable set near the top of the main make file, as
shown in Listing 19. Edit the file if you need to remove this.

Listing 19. Updated GRUB configuration file

[root@attic4 linux]# head -n 6 Makefile
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 15
EXTRAVERSION = -prep
NAME=Sliding Snow Leopard

Rebooting

If all is well, you should now be able to boot your new system. You will need to
select the configuration entry for the new kernel because it is not (yet) the default.
After you are happy with it, you can make it the default. When you reboot, use the
uname command to check your system's kernel as shown in Listing 20.

Listing 20. Checking your new system

[ian@attic4 ~]$ uname -rv
2.6.15-prep-Topic105 #2 Mon Mar 20 21:13:20 EST 2006

developerWorks® ibm.com/developerWorks

Kernel
Page 24 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Review the entire LPI exam prep tutorial series on developerWorks to learn
Linux fundamentals and prepare for system administrator certification.

• At the LPIC Program, find task lists, sample questions, and detailed objectives
for the three levels of the Linux Professional Institute's Linux system
administration certification.

• In "Basic tasks for new Linux developers" (developerWorks, March 2005), learn
how to open a terminal window or shell prompt and much more.

• The Linux Documentation Project has a variety of useful documents, especially
its HOWTOs.

• The Linux Kernel Archives is the ultimate resource for the Linux kernel. Check
for your nearest mirror before you download.

• The kernelnewbies project has lots of information for those new to kernels and
building them.

• The Kernel Rebuild Guide shows you how to configure, build, and install a new
kernel.

• The Linux Kernel Module Programming Guide from Linuxtopia is an online book
about kernel modules for Linux.

• LPI Linux Certification in a Nutshell (O'Reilly, 2001) and LPIC I Exam Cram 2:
Linux Professional Institute Certification Exams 101 and 102 (Exam Cram 2)
(Que, 2004) are references for readers who prefer book format.

• Find more tutorials for Linux developers in the developerWorks Linux zone.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Download IBM trial software directly from developerWorks.

Discuss

• Participate in the discussion forum for this content.

• Read developerWorks blogs, and get involved in the developerWorks
community.

ibm.com/developerWorks developerWorks®

Kernel
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 26

http://www.ibm.com/developerworks/linux/lpi/index.html?S_TACT=105AGX03&S_CMP=tut
http://www.lpi.org/en/lpic.html
http://www.ibm.com/developerworks/linux/library/l-sek51-basics/index.html
http://www.tldp.org/
http://kernel.org/
http://kernelnewbies.org/
http://www.digitalhermit.com/linux/Kernel-Build-HOWTO.html
http://linuxtopia.org/online_books/Linux_Kernel_Module_Programming_Guide/index.html
http://linuxtopia.org/
http://www.oreilly.com/catalog/lpicertnut/
http://www.examcram2.com/bookstore/product.asp?isbn=0789731274&rl=1
http://www.examcram2.com/bookstore/product.asp?isbn=0789731274&rl=1
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?type_by=Tutorials&S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=TUT
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03&S_CMP=tut
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=160&cat=5
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/legal/copytrade.shtml

About the author

Ian Shields
Ian Shields works on a multitude of Linux projects for the developerWorks Linux
zone. He is a Senior Programmer at IBM at the Research Triangle Park, NC. He
joined IBM in Canberra, Australia, as a Systems Engineer in 1973, and has since
worked on communications systems and pervasive computing in Montreal, Canada,
and RTP, NC. He has several patents. His undergraduate degree is in pure
mathematics and philosophy from the Australian National University. He has an M.S.
and Ph.D. in computer science from North Carolina State University. You can contact
Ian at ishields@us.ibm.com.

Trademarks

DB2, Lotus, Rational, Tivoli, and WebSphere are trademarks of IBM Corporation in
the United States, other countries, or both.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other
countries.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.
Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.
Microsoft and Windows are trademarks of Microsoft Corporation in the United States,
other countries, or both.

developerWorks® ibm.com/developerWorks

Kernel
Page 26 of 26 © Copyright IBM Corporation 1994, 2008. All rights reserved.

mailto:ishields@us.ibm.com?subject=Basic tasks for new Linux developers article
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Prerequisites

	Runtime kernel management
	uname
	Kernel modules
	lsmod
	modinfo
	rmmod
	insmod and modprobe
	depmod
	USB modules

	Customize and build kernels and kernel modules
	Source packages
	Configuration
	Building
	Installing
	Boot loaders
	Rebooting

	Resources
	About the author
	Trademarks

