
A RESTful Approach: Clean UPnP without SOAP

Jan Newmarch
School of Network Computing

Monash University
jan.newmarch@infotech.monash.edu.au

Abstract

UPnP is middleware designed for network “plug and
play”. It uses technologies developed specifically for
UPnP but also borrows technologies such as SOAP from
Web Services for remote procedure calls. SOAP has been
criticised as inappropriate for Web Systems and this paper
shows that these criticisms are equally applicable for
UPnP. It shows how mechanisms built on REST princi-
ples can produce smaller, faster and simpler UPnP systems.

Keywords: Middleware, UPnP, network protocols

1. Introduction

UPnP (Universal Plug and Play) is an industry standard
to allow devices to be added seamlessly into a small net-
work such as a home network [1]. The technologies un-
derlying UPnP have been developed steadily since 1998,
and SOAP [2] is included in this as a remote procedure call
(RPC) mechanism.

SOAP has been borrowed as an RPC mechanism from
Web Services [3]. However, there is a strong community
who have criticised SOAP on technical grounds in the arena
of Web Services [4, 5]. The general opinion within this crit-
ical group is that SOAP is a poor implementation of twenty-
year old technology, and is neither done well nor in a man-
ner fitting the intended application area, and offers no novel
features to justify its adoption.

This paper considers these criticisms as applied to using
SOAP within UPnP. It comes to a similar conclusion: SOAP
is not appropriate for UPnP and represents a poor techni-
cal solution to RPC for UPnP control points and devices.
It presents a solution based on REST principles [6] that is
substantially more lightweight for devices and is generally
a simpler and “cleaner” model.

The next section reviews SOAP as an RPC technol-
ogy. We follow that with a critique of the technology from
the viewpoint of REST. Next we examine how UPnP uses

SOAP, and in section 5 suggest a simpler alternative based
on REST principles. Section 6 gives a comparison of the
two methods.

2. SOAP

A remote procedure call (RPC) is a mechanism whereby
an application can make calls on a remote, networked ser-
vice by making what appear to be local procedure calls. The
RPC layer translates this local call on a client-side proxy
into TCP or UDP packets that are forwarded to a server-
side stub where it executes a procedure on the server. The
result is returned back to the proxy where it is presented as
the result of the local call.

There are many RPC systems, from Sun’s RPC (renamed
as IETF ONC) [7], DCE [8] and COM+ [9] through to
Object-oriented versions such as CORBA [10] and mobile
object versions such as Java RMI [11]. SOAP (Simple Ob-
ject Access Protocol) is neither simple nor object-based and
corresponds to Sun’s RPC in nature.

The WWW Consortium has standardised SOAP and has
also defined a protocol transport, namely SOAP over HTTP
[2]. This uses HTTP POST messages to convey a SOAP
procedure call (which is an XML document) and uses the
HTTP response to return another XML document contain-
ing the procedure call results.

3. REST critique of SOAP

REST was invented by Fielding as a term to describe
the “ideal” architecture of the Web as a means of delivering
documents over HTTP [6]. It uses this description to help
explain the success of the web, and how this has guided
work on protocols such as HTTP 1.1. The key concepts of
REST are:

• It describes a simple stateless protocol (no hidden state
as in cookies).

• Every resource is addressable.



• Uniform addressing scheme: every resource is ad-
dressed in the same manner.

• Small number of operations, with distinct semantics.

The criticisms of SOAP include [4, 5]

• SOAP documents have their own protocol of proce-
dure calls, which is layered over HTTP. This increases
the complexity of SOAP procedure calls compared to
simple document fetches using GET and POST. It is
also more highly layered than other RPC protocols,
which typically sit directly above TCP or UDP, which
may increase the possibility of system errors

• The semantics of GET versus POST are that a doc-
ument request using GET is not intended to make
state changes on the server, whereas a request using
POST is expected to do so. SOAP requests must use
POST since they are uploading an XML document,
but there is no requirement that a SOAP request be a
state-change request. This blurs the meaning of POST.
While apparently trivial, this removes a weapon from
the armory of firewall controllers who have been able
to distinguish the intent of a request by its HTTP type

• A SOAP response may be a complex data type repre-
senting several “objects”. Alternatively, it could be a
simple data type or a URL representing a SOAP server
(which is not a SOAP object). That is, a SOAP re-
ply could be of three different types, but these types
do not include other addressable objects! This differs
from other RPC systems which (rightly) claim an ob-
ject base: a CORBA call can return a CORBA refer-
ence to other objects; a Java RMI call can return a Java
object or a proxy object for a remote object. There
is no “type-safety” concept for the URL’s from SOAP
replies

• Still on this issue, the Web has thrived on the ability to
make links between documents. In order to do this, ev-
ery entity must have an address as a URI. This require-
ment is lost when SOAP can return nested data struc-
tures representing entities without addresses and has
no mechanism to return addresses of SOAP address-
able objects (since there is no such concept in SOAP).
Other middleware systems allow calls to return objects
with the same middleware addressing scheme so that
calls can be made to these in turn

By way of example, consider a database query on per-
sons. A SOAP request might look like (simplified):

POST url HTTP/1.1
HOST: ...
CONTENT-LENGTH: ...

CONTENT-TYPE: ...
SOAP-ACTION: ...

<Envelope>

<Body>

<CUSTOMERS>

</CUSTOMERS>

</Body>

</Envelope>

with response:

HTTP/1.0 200
CONTENT-TYPE: text/xml
CONTENT-LENGTH: ..

<?xml version="1.0"?>

<Envelope>

<Body>

<CUSTOMERS>

<CUSTOMER>

<ID>11</ID>

<FIRSTNAME>Julia</FIRSTNAME>

...
</CUSTOMER>

...
</CUSTOMERS>

</Body>

</Envelope>

In this, no customers have addresses. They cannot be
accessed individually; they cannot be passed to other clients
as either objects or addresses since they have no defined
existence outside of the return document.

The REST version is to issue a request:
GET http://host/CUSTOMERS
with response consisting of addresses:

<resources
xmlns:xlink="http://www.w3.org/1999/xlink">

<resource
xlink:href="http://host/CUSTOMER/0/">0

</resource>

<resource
xlink:href="http://host/CUSTOMER/1/">1

</resource>

<resource
xlink:href="http://host/CUSTOMER/2/">2

</resource>

<resource
xlink:href="http://host/CUSTOMER/3/">3

</resource>

</resources>

Further requests are then made of addresses such as:

2



GET http://host/CUSTOMER/1/
with response:

<resources xmlns:xlink="http://www.w3.org/1999/xlink">

<ID>11</ID>

<FIRSTNAME>Julia</FIRSTNAME>

...
</resources>

which consists of primitive values.

4. UPnP and SOAP

UPnP consists of a number of components [12], just
like other discovery systems such as Jini [13] and Saluta-
tion. (The IETF Service Location Protocol does not have
an equivalent of SOAP, since it expects each service to have
its own communication protocol.) The components are:

• A format for service/device description. UPnP uses
XML.

• A mechanism for advertising services/devices. UPnP
uses a new multicast protocol called HTTPMU (HTTP
multicast over UDP) [14], based on HTTP syntax but
(of course) not HTTP semantics. This protocol intro-
duces new verbs such as NOTIFY and M-SEARCH to
replace GET, POST, etc.

• A mechanism for searching for devices/services. This
also uses HTTPMU

• Devices/services in the first place are accessed by their
address as a URL. At that address is a detailed descrip-
tion of the device or service. This is an XML docu-
ment.

• A device description includes vendor-related informa-
tion, a list of services and a URL address for each ser-
vice.

• A service description contains names of methods and
the data types to be passed as “in” parameters and re-
turned as “out” parameters.

• Finally, UPnP specifies that SOAP is to be used for
method calls and return of results.

5. UPnP with REST

Most of UPnP is in accordance with REST principles. A
fairly small set of verbs is used for service advertisement
and discovery (NOTIFY and M-SEARCH). An appropriate
protocol is used: an adaptation of HTTP for a multicast en-
vironment. All devices and even their nested services are

accessible through URLs. Access to device/service infor-
mation is through a standard HTTP GET, and this returns
an XML document. There are no issues with this.

The initial specification of UPnP data-types adopts the
XML data-type specification of primitive types, but with no
aggregation types such as arrays or records. The types in-
clude integers, booleans, floats, dates and strings. There is
no possibility of unaddressed internal data structures in this.
But the audio-visual specifications break this data-type re-
striction and use the complex MPEG-21 hierarchy of data-
types [15]. This issue is considered in more detail later.

However, if the UPnP organisation is prepared to allow
new UPnP services to break with established specifications
then it will need to place some limits on this. It will also
need to place limits on vendor extensions to data-types to
ensure that each data element can be addressed.

The first two criticisms of SOAP (extra protocol layer
and blurring of semantics) are applicable to UPnP. UPnP
has “actions” which are generally expected to change state
and “queries” which ask for the values of state variables
and are not expected to change state. Using SOAP, both
actions and queries must be called using POST, whereas
REST would say that actions should use POST and queries
should use GET. In general, SOAP just supplies a “noise”
layer that increases traffic and obscures semantics without
adding anything to functionality.

For example, the Device Architecture 101 contains an
example query for the value of a state variable in a service
(we simplify it a bit):

POST controlUrl HTTP/1.1
HOST: ...
CONTENT-LENGTH: ...
CONTENT-TYPE: ...
SOAP-ACTION: ...

<Envelope>

<Body>

<QueryStateVariable>

<varName> vblName </varName>

</QueryStateVariable>

</Body>

</Envelope>

which under REST could simply be:

GET controlUrl/vblName HTTP/1.1
HOST: ...

In a similar manner, actions can be encoded
as POST requests with the parameters as an
application/x-www-form-urlencoded string.
For example, a SOAP encoding of an action as:

3



POST controlUrl HTTP/1.1
HOST: ...
CONTENT-LENGTH: ...
CONTENT-TYPE: ...
SOAP-ACTION: ...

<Envelope>

<Body>

<actionName>

<argumentName> value </argumentName>

</actionName>

</Body>

</Envelope>

would under REST be encoded as:

POST controlUrl/actionName HTTP/1.1
HOST: ...
CONTENT-LENGTH: ...
CONTENT-TYPE: application/x-www-form-urlencoded

argumentName=value

The proposed encodings have the service control point
as part of the address (as does the SOAP encoding). But the
proposed encodings also have the query variable or control
action as part of the address, unlike the SOAP encodings
where this information is buried within the XML SOAP re-
quest document. This proposed encoding fits better with
the REST philosphy. It should be noted that this not only
allows quicker processing of valid queries, but also makes
it easier for the server to detect errors such as invalid action
or invalid state variable without needing to parse an XML
document.

6. Implementation

CyberGarage has an implementation in Java for UPnP
devices and control points [16]. This allows devices and
control points to be written in Java and run as applications.
This is available in source code form. CyberGarage is able
to use two XML parsers, the Xerces parser from the Apache
project and KXML, a lightweight parser better suited to
enbedded systems. We modified CyberGarage to use the
simpler GET and POST commands of form encoded data as
described earlier. We then had three versions to test: using
SOAP with both lightweight and heavyweight XML parsers
and a REST-based version using no SOAP in method calls.

We ran a test of querying a service’s state variable one
thousand times in a loop. In the first test the device and con-
trol point were run as separate processes on a Linux com-
puter using Sun’s JDK 1.4. In the second test the device was
run on one computer and the control point on another, con-
nected directly by crossover cable. The first case is slower

because the tasks were time-sharing, each using about 40%
of the CPU, whereas in the second case each task was using
over 90% of the CPU on each machine.

The results are presented in Table one. It can be seen
that the REST-based solution is about twice as fast as the
fastest of the SOAP versions, and this includes overheads
(presumably similar for both) of networking, task switch-
ing, etc. There is also a difference in packet sizes. For

SOAP/Xerces Soap/KXML REST
standalone 196 137 67
network 165 114 64

Table 1. Time to make 1000 queries (secs)

example, a query on a variable Text with value text00
has a payload as XML document or as form encoded values,
both wrapped in an HTTP packet. The sizes for this typi-
cal query are given in Table 2. The sizes are significantly
smaller for the form encoded encoded packets.

SOAP REST
Request payload 350 4

packet 535 84
Response payload 365 11

packet 526 171

Table 2. Query request size (bytes)

In addition to these factors, memory is also consumed
by running an XML parser or an x-www-form-urlencoded
parser, and the corresponding data structures built. We
tested this by just parsing the SOAP payload of an action
against the payload of the same action form encoded.

SOAP/Xerces Soap/KXML REST
classes+data 416,336 114,808 6,072

Table 3. Size of parsers (bytes)

7. Audio-visual proposal

UPnP includes an extensive package for discovering me-
dia services and information [17]. This differs in nature
from existing UPnP standards in that it uses a far more ex-
tensive range of data-types. For example, to describe audio-
visual data a ContentDirectory uses a subset of the MPEG-
21 Digital Item Declaration Language called DIDL-Lite.

DIDL-Lite allows a complex hierarchy of resources to be
stored in a directory. A directory may contain other directo-
ries such as “My Music” and “My photos,” and in turn “My
Music” might list music albums, while inside one of these
might be individual music tracks. The representation of any

4



part of the hierarchy is given as an XML document con-
forming to the DIDL-Lite DTD. However, this structured
document is effectively invisible in the device and service
descriptions since it is simply represented as a string.

For example, the Browse action to search through a di-
rectory has an “out” parameter of A ARG TYPE Result
as a string, but this string is to be interpreted as a DIDL-
Lite document. In its format as a string, it offers nothing
new to the model proposed above. The string can simply be
returned as a parameter in a form encoded string.

However, regarded as an XML document it is necessary
to look more closely at this structure. Each object in a con-
tent directory is required to have a unique identifier “item”.
Calls to actions such as Browsemust give this “item” iden-
tifier of the object it is browsing (so that it can browse sub-
directories and individual items). The returned XML docu-
ment contains a representation of objects in a directory, and
this representation contains the identifier of each object. For
example, a browse of item “0” (the root directory) might re-
turn a list of objects containing identifiers “1”, “2” and “30”.
Requests to these objects must include this identifier.

Effectively this identifier is the address of the object
within the directory service. However, the current proposal
hides this address deep within the SOAP call:

POST controlUrl
...

Browse(id, ...)
...

The identifier is a “hidden” address in that knowledge of
the address is not enough to get access to it: it is neccessary
to use a SOAP method call. The identifier should be made
part of an address for the object, so that it can be accessed
directly. A possibility might be controlUrl/id.

Requests to the object could then be made directly to
its address, qualified by parameters giving the request de-
tails. For example, a browse request does not change state
so could be sent as a GET rather than POST:

GET controlUrl/id?requestType=browse...

The current type of the identifier is string. This would al-
low a URL to be given in place of just the identifier without
changing the specification. But it would be better to change
the specification to be a url instead of any string.

In addition to making the address visible, there is also the
side-benefit that addresses are no longer restricted to just the
device - an object could be anywhere on the network. Cur-
rently, the specification only allows a final resource such as
a CD track to be a url. By allowing urls to be the value of an
“item” would allow more flexible use of devices. For exam-
ple, if a mobile media service joins the network then it could

(a) remain as a separate service; (b) have all its media infor-
mation copied to an existing “central” server; or (c) under
this proposal could simply copy a top-level container ad-
dress to the central server. Requests in this last case would
be referred to the device actually carrying the service. This
would reduce traffic in amalgamating playlists, etc, from
multiple sources.

8. A double standard

The UPnP organisation has mandated SOAP for UPnP
v1.1. Discussions for UPnP v2.0 are now underway. It is
possible for the REST proposals to coexist with the exist-
ing SOAP. If a device receives a GET request then it must
be a REST request since SOAP does not allow GET. If it is
a POST request then the Content-Type can be used to
distinguish between SOAP and REST. In this paper we have
used the content type of x-www-form-urlencoded,
but to avoid any potential ambiguity another name could be
invented. Thus there is no difficulty in transitioning from
one mechanism to the other.

9. Conclusion

It has already been noted that the allowable data-types
are not bound by the original specification documents.
REST can offer some pragmatic guidelines particularly in
regard to addressability of objects for future work in this
area.

There is a significant advantage to using REST instead of
SOAP. Devices using SOAP need to be able to parse XML
documents; devices using REST do not have this require-
ment. Although devices may be required to produce XML
documents (as in media content) this can be done simply by
string operations that do not need an XML parser.

Thus there is a significant memory and processing re-
quirement caused to devices by using SOAP that is not
present using REST. UPnP systems using REST techniques
are demonstrably faster and lighter than those using SOAP.

References

[1] UPnP Forum, UPnP Home Page,
http://www.upnp.org.

[2] WWW Consortium, “SOAP 1.2 Protocol,”
http://www.w3.org/TR/soap12.

[3] WWW Consortium, Web Services Home Page,
http://www.w3.org/2002/ws/

[4] P. Prescod, “A new direction for Web
Services,” XML Journal, http://www.sys-
con.com/xml/article.cfm?id=454.

5



[5] J. Newmarch, “A critique of web services” IADIS E-
Commerce 2004, Lisbon, 2004.

[6] R. Fielding, “Architectural Styles and the
Design of Network-based Software Ar-
chitectures”, http://www.ics.uci.edu/ field-
ing/pubs/dissertation/top.htm.

[7] IETF, “ONC Remote Procedure Call”
http://www.ietf.org/html.charters/oncrpc-
charter.html.

[8] Open Software Foundation, Open Group DCE Portal,
http://opengroup.org/dce/

[9] Microsoft, COM+ Home Page,
http://www.microsoft.com/com/tech/COMPlus.asp

[10] Object Management Group, OMG Home Page,
http://www.omg.org/.

[11] Sun Microsystems, “Java Re-
mote Method Invocation¡”
http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html.

[12] UPnP, “UPnP Device Architecture”,
http://www.upnp.org/resources/documents/

[13] K. Arnold et al, “The Jini Specification”, Addison-
Wesley, 1999.

[14] Y.Y. Goland, et al, “Multicast and Unicast
UDP HTTP Messages”, expired IETF draft,
http://www.upnp.org/resources/specifications.asp.

[15] MPEG, “ MPEG-21 Overview v.5”
http://www.chiariglione.org/mpeg/standards/mpeg-
21/mpeg-21.htm.

[16] S. Konno, “Cyberlink for java”
http://www.cybergarage.org/net/upnp/java/index.html.

[17] UPnP, “MediaServer V 1.0 and MediaRenderer V 1.0”
http://www.upnp.org/standardizeddcps/mediaserver.asp.

6


