
A Dynamic, Discovery Based, Remote Class Loading Structure.
Adrian Ryan

School of Network Computing
Monash University

Melbourne, Victoria, Australia
email: adrian.ryan@infotech.monash.edu.au

Jan Newmarch
School of Network Computing

Monash University
Melbourne, Victoria, Australia

email: jan.newmarch@infotech.monash.edu.au

ABSTRACT
Remotely accessible services enable current day systems
to gather information, generate programs, access server
data and interoperate throughout environments. Such tech-
niques may be associated with the web, service discovery,
and remote object based technologies. However, there is
no technique which incorporates all the positive aspects of
each of the currently used methods.
This paper presents a remote class loading structure that
expands the reach of a Java Virtual Machine (JVM) to
beyond its host system. By interlinking remote classload-
ers within an environment the structure allows dynamic
access, via advertisement and discovery, to each system’s
accessible class files.

KEY WORDS

Remote Class Loading, Dynamic Class Discovery,
Software Engineering Applications.

1 Introduction

Java class bytes are normally loaded into a JVM through
the use of a class loader [1]. This can be achieved by us-
ing Java’s standard bootstrap loader or a specialised loader
such as URLClassLoader, AppletClassLoader(s) or RMI-
ClassLoader [2].
Specialised classloaders may instruct a program to gather
java class bytes from abnormal places or in an irregular
fashion. For example, the AppletClassLoader is able to
load a java class from a specified url location [2].
We categorise the discovery and utilisation of remotely ac-
cessed classes into two technique types, direct download-
ing (Web based applets and scripts) and Remote Objects
(distributed techniques such as RMI, JINI and CORBA).
Each method for the gathering of class information has
been developed for specific reasons and uses. Remote ob-
jects aid in distributed system connectivity, whereas web
based techniques are designed to enable thin minimally
connected clients. However, we find that neither technique
is able to construct an application from class files that the
application does not have nor know it will need. We aimed
to develop a technique where a system is able to gener-
ate an entire program never having to know where most
of the files are located. A tourist application, a home sys-

tem’s self configuration and interlinking, and zero config-
uration within environments are examples of applications
that would benefit from such a technique. One scenario
we envisage is a tourist system which allows users to run
a destination specific application via the same program.
Tourist destinations are able to develop unrestricted infor-
mative applications that are accessible for users to imple-
ment temporarily. The design is such that an application
never physically resides on the users device, start up and
runtime changes can progress through the use of distributed
class files.
This paper introduces a specific class loading structure
which allows dynamic loading through the use of a dis-
tributed methodology. In conjunction with discovery tech-
niques we have developed a specialised classloader that can
be used to eliminate the need for classes to exist on the
same machine as the host program. Our use of a discov-
ery based class loading structure provides access to remote
classloaders which can be discovered and used to download
java class files. This then gives access to Java class files
that may be downloaded via anunknownsystem, files that
have, or have not been, instantiated by the discovered class-
loader. Furthermore, all Java classes are potentially acces-
sible as there is no unique programming structure required
in class development. The remote class loading structure
can be used to create a dynamic environment where inter-
acting systems, through the use of their classloaders, can
access all classes available to each system.
The first section of this paper details the techniques cur-
rently used for remote class access, discussing how each
concept was used to design the remote class loading struc-
ture. The remote class loading structure is then examined
in the second section. The third section covers the testing
of the class loading structure using several examples. Fi-
nally, we consider further uses and finalise by detailing our
observations, future work and conclusions.

2 Distributed Classloading

Changes to a program’s structure can be initiated and
completed via distributed techniques, including the abil-
ity to upload remote classes or objects [3]. Such structure
changes may then allow systems to alter their behaviour ac-
cording to their interacting network.
OSGi [4] based systems give devices, mainly home based



devices, the opportunity to access specific details from
within their environment. This enables them to configure
their internal structure giving themselves access to other
systems and information within the network, or outside it.
For the changes to occur, details in the form of files or at-
tributes must be located in an accessible section of a system
for them to be found [4].
In such an environment access to the remote files and ob-
jects involve program design and construction adhering to
the specific standards of the technique used.

2.1 Remote Objects

Distributed techniques that use remote object manipulation,
such as Jini, RMI and CORBA [3], are also constrained to
their specific designs and techniques. For example, within
Jini and RMI an object, class, or proxy service that is to be
accessed remotely needs to implementjava.rmi.Remote
or java.io.Serializable somewhere within its structure [3].
Furthermore, it must also implement an interface that is
known to both the server and the client.
This technique is ideal for remotely accessing sections of
a server that exist for the use of clients and the sharing of
information. By specifying the methods of a remote ob-
ject through use of an interface, restrictions on the type of
processing that may be performed by a client can be estab-
lished.
Although remote objects aid in the connectivity of clients
and services in distributed systems, there are several areas
that are not clearly defined. For example, a client may wish
to run a process using a remote object yet wishes the com-
putation to be performed without the acknowledgement of
a server. Or, connection with a server may not be the main
purpose of the client. This may be a situation where the
client does not wish to create an instance of a remote ob-
ject, but only to create an instance of a class that is located
on a separate system.
Some distributed systems use a marshalling technique
where there is no actual passing of class bytes until an ob-
ject has been discovered. This newly discovered object , in
the form of a marshalled object (as is the case in Jini), then
points the client system to the actual class byte code for it
to be initialised [5]. Therefore, using such a technique we
are unable to create an instance of a class without having a
reference to an existing object on the server side.
However an advantage of remote objects is the use of proxy
services, which is a remote object that allows a client ac-
cess to server side processing. When advertising a proxy
service we deal with a situation where the processing can
be achieved on the server and results are passed back to the
client. To achieve this link the proxy service object must
still implement the specified common interface(s). Once
again an interface that must be known to both server and
client.
The ability for remote object applications to create in-
stances of remotely based classes is derived from their ac-
cess to stub files and interfaces. The creation of the class

instance, by this we mean the initialisation and instantia-
tion of the remotely based class, is still achieved through
the JVM’s classloader. However, in the case of RMI and
Jini a RMIClassloader will handle the loading. The RMI-
Classloader is able to load classes using the codebase URL
reference that is stored within a discovered Marshalled ob-
ject. This information is then used by the classloader to
find the needed class bytes and generate a class instance.
The class instance is then merged with the serialised object
information from within the Marshalled object to regener-
ate the remote object [5, 6].
This limitation within Jini’s structure is generally not noted
as a disadvantage. Jini based applications are usually de-
signed to make use of its distributed flexibility and dis-
covery techniques, not to manipulate the loading of remote
class files.

2.2 Web Based Classloading

Web based programs do not use remote objects instead they
are able to access remote code. This gives them the abil-
ity to load program code that does not exist on a client’s
system. Unlike distributed techniques they are able to load
class files without the need for a linked object to a host.
Within web based loading there is no use of remote objects
as such, yet there is still a need to generate objects from
classes that do not exist on a client’s system. Java applets
use a specific classloader designed to direct clients back to
a service (such as a http server), or specified port/proxy, lo-
cated on a server (usually this is the originating server of
the applet). The client’s classloader is then able to down-
load class files as they are instantiated, generating local ob-
jects based on the remote class byte code [6]. This allows
clients to run applications that do not exist on their sys-
tems. It also gives vendors control over versioning, security
specifications, personalised attributes and upgrades. How-
ever there is a lack of dynamism and location unawareness
which may disadvantage the client, particulary its class-
loader. A client must know the correct server location to
contact if it is to locate any class files.
Current web based applications, for example applets, are
not greatly effected by this limitation, as they only need a
static address to find information. It may be assumed that a
client has contacted the site for a specific reason and there-
fore should not require any redirection from this location.
This allows the applet to assume the originating static ad-
dress provides all the necessary classes for the application
to execute correctly.
Much like applets, Java’s Web Start allows a client to gen-
erate a program via web based links [7]. It runs within a
web browser (however this is not always necessary) and is
able to generate applications from scratch through a spec-
ified URL. Web Start was created to remove the confusion
that surrounds the installation of multiple applications and
their version control [7]. Although Web Start is similar to
applets there are distinct differences.



1. Web Start handles much larger applications and is not
confined to the browser.

2. Web Start uses caching to allow users to run applica-
tions when not connected to a network.

3. Web Start, when compared to applets, gives a greater
flexibility to its programs allowing for greater control
and creativity.

4. Web Start needs to be installed on a users machine
before it is able to be used.

Web Start still has the restriction of using a URL type link,
and although it is able to recreate previously run applica-
tions, initially it must still know exactly where to get the
application from.
Web server type operations are unlikely to remain the same
for any considerable amount of time. The evolution of
wireless devices, networks, and communication techniques
will generate a need for more unrestricted techniques of
communication and interaction. The flexibility of systems,
namely their discovery and adaptability techniques, may
determine the useability of a device or system within any
environment (wireless or not) that it is likely to encounter.
This is not to say that static based concepts will be com-
pletely superseded nor that they cannot be utilised to con-
struct the more adaptable techniques that are needed.

3 A Remote Classloader

Using concepts and techniques from both remote objects
and web based classloading may enable systems to load
classes from remotely accessed classloaders that they ini-
tially had no knowledge of. Such a structure would have
no need for the most limiting aspects of both techniques, a
common interfaceand aURL reference.
It would enable systems to share classes between them-
selves, whilst being able to find and use classes without
prior knowledge of their whereabouts. Remotely accessi-
ble classloaders also enable centralised systems, similar to
applets and Web Start based applications, to download the
files from servers without requiring the application to di-
rectly specify a URL address. Users are able to run pro-
grams on their own systems even though only a few ini-
tial files need to be stored directly within its memory (This
may be avoidable through an initial downloading technique
not covered in the scope of this paper). This particular at-
tribute will prove extremely useful for limited memory de-
vices and embedded systems.

3.1 Java Classloading

Java’s class loading is optimally designed to aid in the dy-
namic linking and loading of class files [1]. Whilst it al-
lows files to be located, loaded, and linked during runtime
the classloader also aids in the segregation and distribu-
tion of byte code within the JVM [1]. The dynamic nature

of Java’s classloading and its close connection with class
byte code allows designers to use specialised classloaders
to manipulate class files in unspecified ways. Furthermore,
the hierarchial structure that is produced when classes are
loaded into a JVM allow for the defining of an applica-
tions loading techniques. As classes are located, loaded
and linked via a classloader, be it the bootstrap or not, any
subsequent classes, or classes instantiated via an already
loaded class, will be (if not previously loaded) loaded via
the same class loader [1]. In practice this allows program
designers to load an initial class (generally a start up class
containing themain() method orinit() method) through
a specialised classloader, thus loading the entire system
through a unique class loading structure. Furthermore, if
the same system then loads another different classloader,
say for a specific section of its system, the additional class-
loader will then be loaded through the first classloader. If
the second classloader fails then all class processing will be
delegated to is parent classloader (the first classloader) and
so forth [1].

3.2 Remote Access to Classloading Methods

The bootstrap classloader methods that are used to find,
load, define, and initialise classes, work together forming
the total loading structure of the JVM. The initial loading
structure of the classloader, as detailed by Lindholm and
Yellin [1], is relatively simple in architecture. Other meth-
ods may be called during the loading process, particularly
in the case of a personalised classloader, yet all original
methods will still be called by the JVM in the same manner
and procedure. A programmer is able to alter the structure
of these methods in order to achieve a specific task, redefin-
ing how the loading structure intercommunicates and oper-
ates.
By defining interfaces that must be implemented by a re-
mote classloader we are able to determine a new set of
procedures that are available. These additional methods sit
in between the classloader and a gateway/proxy (as is dis-
cussed in section 4) enabling access to the classloader it-
self. This then allows a remote system to check for classes,
loaded or unloaded, that exist within the reach of a class-
loader that has beendiscovered. They also allow all ac-
cessible classes (essentially anything within reach of the
classloader) to be downloaded and used as needed. This
leaves the discovered classloader to only retrieve and send
the class byte code and not initialise it within its own JVM.
Within this specification the definition of specific methods
are used to maintain the separation between a classload-
ers normal operation and that which can be invoked re-
motely. The structure allows a classloader to look amongst
its own designated classpath for files (or further if inter-
nally specified) and within its JVM to find any java classes
that are requested. It will then transfer the class byte code,
if available, to the requesting system. They do not however
pass any byte code through their own virtual machine, this
should not be achieved until thedefineClass() (a bootstrap



classloader method) method is instantiated within its own
structure [1].

3.3 Remote Discovery and Advertisement

A key to the remote class loading structure is its dynamic
discovery of remote classloaders. It gives applications re-
stricted access, through a distribution technique, to the ac-
tual inner sections of a remote JVM. This technique pro-
vides the structure with two of its crucial aspects.

1. The ad-hoc discovery of classloaders. There is no
need for a system to know an actual address of the
classloader they are going to use to gather class bytes.

2. The transfer of byte code through any remotely acces-
sible classloader. Every class that is searched for by
a JVM does not need to be located and loaded via the
same system.

These unique attributes give the remote classloading struc-
ture the ability to create applications that are more flexible
and adaptable within environments such as a wireless net-
work. Yet it still maintains the direct and precise constructs
that are needed for use within more concrete environments
such as in a server/client situation.

4 Structure

Access to a remote classloader is not achieved physically
through the actual classloader but through a remote proxy
and gateway setup. If a system was to gain access to an ac-
tual remote classloader it may still enable the loading and
unloading of classes within a system. Yet all classes loaded
would need to be contained within that same system.
To enable remote loading from remote systems a
proxy/gateway can be used. The proxy and gateway is able
to establish a connection, via a remote object, between sep-
arate classloaders facilitating a search procedure to access
files on the discovered system. Furthermore, the gateway
within the structure may allow for a security extension and
user defined file access.
Initial specifications for a remote classloader, although
flexible, constrict it to being both a discovery and an adver-
tiser. Therefore, each remote class loading structure will
advertise itself as an available service, whilst also having
the ability to discover other class loading services if needed
(see figure 1). This allows the services to create a web of
accessible information for all systems to access files from
separate loaders.
However, this is left relatively flexible as there are no con-
straints that disallow the use of a “discover only” class-
loader. This extensibility has been introduced for further
on-going development within resource constrained devices
such as mobile phones and personal data assistants (PDAs).
Such systems may be noticeably interrupted by the upload-
ing of a file from within its system and thus may wish to
selectively exclude some features.

remote classloaders

system 1 system 2

proxy/gateway proxy/gateway

class loading
structure

class loading
structure

Jini Registrar

discover
classloader

advertise advertise

system
sections

system
sections

Figure 1. Discovery and Advertising of Remote Class
Loaders

4.1 Initialising the Target Application

The design of Java’s class loading is flexible enough that
it allows the creation of our versatile and adaptable remote
class loading structure. A classloader is the basis for the
loading and initialisation of Java programs. It is therefore
reasonable to suggest that the remote class loading struc-
ture can be used as the underlying loading mechanism for
any Java based program. This gives the remote class load-
ing structure even greater flexibility and useability as there
is no limitation to the type of program that can gain from
its techniques.
To allow this our structure loads any start class of a pro-
gram in the same manner as a JVM would. It searches the
targeted start class for itsmain() method, and if found in-
vokes it. The hierarchy design of the java loading structure
then specifies that all the following classes derived from the
initiating class will be loaded through the same classloader,
this being the remote classloader. Meaning that all classes
instantiated by any program that has been started using the
remote class loading structure will also be loaded using the
remote classloader.
This is not to say that a developer cannot produce their own
classloader, for example one that overwrites the structure of
the remote classloader. However, Java’s hierarchial class
loading architecture means the unique classloader will re-
vert back to the remote structure if, or when, it fails [1].
Therefore, the remote classloader may still be used as a
backbone for the application.

5 Testing

To efficiently test the remote class loading structure, a test
scenario and corresponding application was developed. Al-
though the remote class loading structure is designed to be
used by any Java program a specifically developed system
would enable us to test its characteristics and determine its
practicality within the scope of our research.



5.1 Test Case 1 - Dynamic Factorial

To initially test the remote class loading structure we
needed to be able to determine the exact moment a class
that does not reside on a host system is called. To do this
we first used a simple Factorial Program. The Program
consists of two classes,factorial.FactorialGui.class and
factorial.Factorial.class
The time of the generation of the second class can be pre-
determined as it is based on a user triggered event from the
GUI. This then allowed us to determine an exact moment
when the remote class loading structure was being used.

5.2 Specifications

Classfactorial.FactorialGui consists of AWT components
including aButton andTextfield. The event triggered by
a button press instantiates an object offactorial.Factorial,
first calling the base constructor then calling thefactori-
ate(int num) method. This will return the factorial value
of the integer passed in as an argument. Once this method
is completed the result is displayed within theTextfield of
the GUI.
The same program was then executed on two separate ma-
chines, both using the remote class loading structure and
connected to the same network. On one of the systems
we left all files as standard, in running order, whilst on
the other we deleted thefactorial.Factorial.class file. The
system will be unable to find this class locally, when it is
requested from the Button Event, and the remote class load-
ing structure will therefore have to look elsewhere for it.
We then observed that it located the second remote class
loading structure (as advertised from the second system)
and initiated a search for thefactorial.Factorial class bytes
within the reach of the second classloader’s JVM. Remem-
bering thatfactorial.Factorial only exists on the second
system, as detailed earlier, we observed that the applica-
tion found, read and sent the corresponding bytecode back
to the searching classloader. The searching classloader re-
ceived the bytes and was able to load and initialise them as
normal.
There was no hard save of the class file to the receiving sys-
tem, that is,factorial.Factorial is never actually saved to
persistent storage on the searching system. Therefore, once
we closed each system completely, we found that each sys-
tem’s file structure remaind unchanged from when we had
originally set them up.
Upon restarting the searching system again, in the exact
same way, we were again unable to findFactorial.class
locally. However, on this occasion the second system was
not running, and subsequently the first system could not
find the missing class file. AClassNotFoundException
was thrown and appropriately handled via the remote class
loading structure.

5.3 Results

As an initial test-bed the Factorial program demonstrated
that the remote class loading structure was able to down-
load and instantiate a class that it did not initially con-
tain. The design of the remote class loading structure not
only allowed the Factorial program to access and instan-
tiate a class file that did not exist (factorial.Factorial), it
also reflected the initial objectives of our research through
its demonstrated flexibility and dynamic nature.
This test was an initial test and further development of a
moreusefulexample allowed us to view the useability and
practicality of the technique. We also needed to test the af-
fects of the loading of a class into system that had no prior
knowledge that it was going to be loaded.

5.4 Test Case 2 - Tourist Information Service

Based on a simple tourist system we developed a small
program that uses our class loading structure for a specific
purpose. The system allows visitors to view a destination
specific application using the same program. Furthermore,
there are no restrictions to the type of application the tourist
destination is able to provide.

5.5 Specifications

The tourist application was designed using an initial start
up class (tourist.Tourist.class) that then generates an in-
stance of another class (tourist.TouristInit.class). Al-
though, a Tourist object is the initial instantiating class
it is not the most productive in operation, this func-
tion belongs to thetourist.TouristInit class. Therefore,
tourist.Tourist.class (along with the remote class loading
structure) is the only file that is needed on a users system.
This class being extremely small in design would easily fit
on a resource limited device, furthermore in this example
the design is such that the rest of the program resides some-
where else within the network.
The Tourist system application has been designed to be
used using a central server which is based at each tourist
site. Although, this is not necessarily where each system
will gather all their files from as different tourist desti-
nations are able to write their own representation of the
Tourist system. Whereas, users only need to use the same
Tourist program in order for then to view each destination
specific program. As a user starts the Tourist program the
remote class loading structure will take over the loading
of the classes. Due to this all classes can be found from
either, acentral serveras setup by a tourist destination,
or, a separate user’s systemthat has utilised the program
and advertised their own classloader. The system is based
within a networked environment and is therefore able to ac-
cess all network machines, including web servers and other
file loading techniques. These may also be used by the de-
signers of specific tourist systems to facilitate access to im-
ages and information specific to their program (for example



photographs of the tourist destination). Our test example
Tourist program used this type of architecture to gather im-
ages that are loaded into remotely accessed classes.

5.6 Results

Similar to the initial testing results of the Factorial exam-
ple, the tourist destination proved to work efficiently and
correctly as intended whilst running within the remote class
loading structure. The Tourist program was designed to test
the flexibility, in terms of conventional programming tech-
niques, file access, and event based changes, of the remote
class loading structure. We found that the extensibility of
the structure in terms of location discovery and multiple
class downloading allowed the Tourist program to be used
as intended by a client. This operation also included giving
access to images and information from a location that was
initially unknown to the client.
A target tourist program was designed that loaded multiple
classes that were unknown to the client system, whilst also
accessing remote picture files via a HTTP server. All of
which proved successful.
The results obtained in testing the Tourist program showed
that the technique can be applied to more meaningful ap-
plications. In this case the system worked much like a web
page, yet allowed the user to not only view information but
also generate an entire program.

6 Observations

The remote class loading structure’s use of Jini 1.1 [5] gives
it a dynamic method of accessing classes. While the inter-
nals of the classloader allow it to download files simply and
efficiently. Some methods of downloading are reminiscent
to those of a standard web browser, that generally follows
these common steps.

1. Find and load and initial file (.class or .html).

2. Gather further information as is needed for the initial
file to proceed (pictures, further classes/pages, docu-
ments etc).

3. Continue operation until user closes application, never
actually writing anything to the users drive (cookies
and caching can be excluded from browsers as these
may not be considered mandatory for its operation).

It is in the combining of the computational power of Java
with the dynamic adaptability of the remote class loading
structure that gives this technique a unique difference. Yet
as is often the case, with extra power and flexibility also
comes a greater risk of attack. Currently there is no se-
curity measure that can, efficiently, stop a would-be at-
tacker replacing a searched class (unavailable locally) with
a spoofed version and thus interfering with a users system.
The gateway section of the loading structure may be used to
rectify this situation in the future, as this is one section that

has been left open for further advancements of the struc-
ture.
The design of the remote class loading structure allows Java
applications to share files, data, and design structures whilst
also allowing the designers to maintain total control over
their work. Furthermore, applications may become so di-
verse that they offer spontaneous, or selective, version up-
dates creating user established environments.

7 Conclusion

Remote class loading via a dynamic discovery technique,
such as Jini [3, 5], is a unique concept that gives access to
Java class files within an environment.
The discovery of remote classloaders produces a peer-to-
peer feel in accessing of the internals of their associating
JVM’s. Allowing any Java program to access, and give ac-
cess to, Java class files within the environment.
The testing of our remote structure demonstrated its useful-
ness within a wireless network, extending the flexibility of
targeted programs whilst handling multiple remote class-
loaders and devices. AccordinglyThe structure has proved
successful As a basis for establishing a unique technique in
obtaining a dynamic spontaneous link between systems.

7.1 Future Work

Continual research into aspects of the technique encap-
sulates areas such as, security, performance, multiple
platforms and proxy manipulation. As discussed within
this paper security issues may initially be a priority,
focusing on the structure’s flexibility and efficiency.
Further testing and analysis of the structure’s negative
effects on a discovered system are planned, however, at
present these appear to be minimal.

References

[1] T. Lindholm and F. Yellin.The Java Virtual Machine
Specification. second edition(Reading: Addison-
Wesley, 1999).

[2] Java 1.4.1 api.http://java.sun.com/j2se/1.4.1/docs/api/

[3] J. Newmarh.A Programmer’s Guide to Jini Technol-
ogy.(New York: Apress, 2000).

[4] OSGi - Open Services Gateway Initiative
www.osgi.org

[5] W.K. Edwards.Core Jini. second edition(Upper Sad-
dle River: Prentice Hall, 2000).

[6] Dynamic code downloading using RMI
http://java.sun.com/j2se/1.3/docs/guide/rmi/codebase.html

[7] Java Web Starthttp://java.sun.com/products/javawebstart/


