
UPnP Services and Jini Clients

Jan Newmarch
School of Network Computing

Monash University
jan.newmarch@infotech.monash.edu.au

Abstract

UPnP is middleware designed for network “plug and
play”. It is designed to manage devices, unlike more gen-
eral middleware such as Jini which is designed to manage
services. Since UPnP uses more simplistic technologies
than Jini, it has appeared to be easier to build and deploy
UPnP devices than Jini devices. This paper shows how
UPnP devces can also expose themselves as Jini devices
in a fairly easy manner, and discusses the advantages of
having UPnP devices available within a more general
purpose service middleware.

Keywords: Middleware, UPnP, Jini, Service oriented
architecture, Embedded systems

1. Introduction

UPnP (Universal Plug and Play) is an industry standard
to allow devices to be added seamlessly into a small net-
work such as a home network [1]. The technologies under-
lying UPnP have been developed steadily since 1998, and
UPnP is now based on the following: TCP, UDP and multi-
cast network protocols in addition to search protocols such
as HTTPU and HTTPMU and method invocation by SOAP.
The UPnP consortium has standardised a number of devices
such as light switches through to A/V players. However, the
UPnP middleware is “device-centric” and does not contain
mechanisms to share in general service-based middleware
systems.

There are an increasing number of service-based mid-
dleware systems, including Jini [2] and Web Services [3].
While Web Services are currently targetted at business sys-
tems with corporate-scale discovery and registration mech-
anisms, Jini was designed to support both the kind of adhoc
discovery mechanisms that are needed for zero configura-
tion home systems as well as the larger scale business ser-
vice systems.

Nevertheless, Jini has not made inroads into the smaller

device markets, in contrast to UPnP. This paper discusses
the technical reasons for this apparent failure, and shows
how a UPnP device can both advertise itself not only as a
UPnP service but also as a Jini service and hence can be
invoked by a Jini client, with minimal overheads on the
device. The advantages of this “dual personality” are dis-
cussed.

The structure of this paper is as follows: in the next sec-
tion we review UPnP and in the following section do the
same for Jini. The next section summarises the differences.
This is followed by a more detailed discussion of mobile ob-
jects in Jini. The main results are given in Section 6, where
we restrict Jini to UPnP services. We show that it is possible
to embed a Jini lookup service within a UPnP service with
the resultant Jini service proxy able to talk directly to the
UPnP service. The following section discusses our imple-
mentation and other possibilities. We then conclude with a
discussion of the value to both Jini and UPnP of this work,
and a look at future work. Our contribution is that we show
that it is easy for a UPnP service to be a Jini service as well,
and this increases the scope of use of UPnP devices within
a more general service framework.

In related work, Allard et al [9] discuss a Jini/UPnP
bridge. In this system, specialised software acts as bridge
between the two middleware systems. For each UPnP ser-
vice instance the bridge generates a Jini service which it reg-
isters with a Jini lookup service. Calls on this Jini service
are transformed into calls on the UPnP device, and returns
from this device are similarly translated back into returns
from the Jini service. The advantage of this method is that it
does not require any invasive code in the UPnP device. The
disadvantage is that it requires specific code to be written
for each UPnP device type, and a bridge object to translate
between method calls of the two middleware systems. We
do not require additional code to be written, have no bridge
object and the Jini client makes calls directly on the UPnP
service without any intermediate third party.

Pota et al [10] discuss the relationship between Jini and
Grid Systems. They also talk about a bridge object, but
consider the possibility of the Jini service proxy talking di-



rectly to the grid service using the grid service’s protocol.
However, they do not discuss any implementation features
of their work.

JMatos [11] is an existing Jini system that builds a spe-
cial purpose Jini lookup service. The proxy for this lookup
service can be completely downloaded to the client, so that
as in our system there is no need to have Java to run the
lookup service. Their system is designed for general pur-
pose low-resource systems, while ours is able to take spe-
cific advantage of the tighter environment of UPnP services.

2. UPnP and Jini

UPnP is designed as language agnostic middleware par-
ticularly suited for small network-aware devices in a zero
configuration environment. A typical example of such an
environment is the future home, where many mundane de-
vices such as light switches, air conditioners, etc, through to
more sophicated devices such as A/V storage devices will
exist, all with IP networking capability. Other possibilities
include automobile systems or sensor networks which re-
quire minimal configuration.

UPnP devices advertise themselves by multicast [3].
Muticast scope typically limits advertisements to the local
network. UPnP devices have no protocol for unicast adver-
tisements beyond this scope. Clients searching for UPnP
devices also make requests by multicast, and again there is
no unicast mechanism.

Advertisements and searches are performed by using
a protocol derived from the principles of HTTP requests,
but adapted to multicast: text based messages using a
small number of verbs. Advertisements provide informa-
tion about services by giving basic device and service infor-
mation while providing URLs for further information such
as how to control the device. These protocols, known as
HTTPMU and HTTPU have been prescribed by the UPnP
consortium.

Services on a device have functions that can be called
directly and events which can be delivered to listeners. Ser-
vice functions are invoked by SOAP calls, a protocol bor-
rowed from Web Services. In addition, UPnP devices main-
tain state, and changes of state are signalled by changes in
state variables. These changes are notified by unicast to
a list of listeners who have explicitly subscribed to state
changes.

Jini is Java-specific middleware. It relies on clients able
to interpret Java bytecodes. It is designed for a general pur-
pose environment, able to take advantage of multicast and
zero configuration environments and yet also has unicast
mechanisms for general internet services.

Jini makes use of a service registry called a “lookup ser-
vice”. Services and clients find a lookup service by local
multicast or by unicast to known locations. Services regis-

ter themselves with a lookup service and clients ask it for
suitable services. Services are stored and moved around the
network as Java marshalled objects, and are downloaded to
clients where they run in the client’s Java virtual machine.

Typically, a client will download a proxy for the service
which will communicate using a protocol such as RMI back
to the service. However, Jini does not mandate any partic-
ular proxy/service structure or communication protocol be-
tween them. While it happens to be most common and con-
venient to use RMI proxies communicating using an RMI
protocol, other possibilities can exist.

Some services can also generate events, and clients add
themselves as event listeners by sending a client proxy to
the service. Again, while there is much flexibility possible,
RMI proxies are usually sent.

3. Comparing UPnP and Jini

While there are some common features between UPnP
and Jini, there are also many differences. These are sum-
marised in Table 1. UPnP uses fixed protocols for all op-
erations: advertisement, discovery and invocation. On the
other hand, Jini only has a fixed protocol for searching for
lookup services and this protocol does not require Java.

UPnP has a very limited set of data types that can be
used in method invocation [3]. They are the primitive types
such as integers, boolean values and strings. Jini can use
any serialisable Java object. This includes structured types
such as arrays in addition to the full set of Java objects as
well as the primitive types. In adddition, proxies can also
define their own protocols and move objects appropriate to
that protocol (e.g. CORBA IIOP references).

There is a cost to this flexibility, in that it requires the
movement of Java objects across the network, usually from
one JVM to another.

Since UPnP is language agnostic and only supports sim-
ple data types it does not need to support any form of ob-
ject mobility. Jini does, because it needs to get lookup ser-
vice proxies to clients and services, and service proxies to
clients. Once there, a Java runtime must be present to han-
dle the proxies. In addition. method calls that have objects
as arguments or return values also require mobility - either
to transport serialisable objects or to transport proxies for
remote objects.

The mobile objects in a typical Jini djinn are shown in
Figure 1.

4. Restricting Jini to UPnP-like Services

4.1. Restricted datatypes

If a Jini service only uses the datatypes supported by
UPnP, then there is no object mobility required for method



Property Jini UPnP
Service adverts via a Lookup Service (LUS) Direct multicast

Service discovery via an LUS Direct multicast
Discovery protocol fixed fixed

Service invocation protocol Unspecified (JRMP, Jeri, IIOP, etc) SOAP
Object references Java proxy objects URLs or XML documents

LUS proxy (to client and service)
Service proxy (to client)

Mobility Method call arguments (to service) None
Method call result (to client)

Listener registration (to service and LUS)
Unknown class definitions downloaded from an HTTP server

Language Java only Agnostic
Data types Any, including Java objects Small set, mainly primitive

Table 1. Differences between UPnP and Jini

client proxy
listener

client proxy
listener

service proxy
LUS

service

LUS proxy

client

LUS proxy

service proxy

method args

method result

Figure 1. Mobile objects in Jini



arguments or return values. The primitive types such as
integers and the content of strings can be sent across the
network without requiring any Java object mobility. The
parameters and return values do not require Java in either
client or server for UPnP data types.

4.2. Invocation protocol

Jini does not specify the method invocation protocol. In
fact, Jini 2.0 [4] has made this completely configurable so
that a service proxy can use any desired invocation mech-
anism. In particular, a proxy can be set up to use SOAP,
the UPnP invocation protocol [5]. In Jini 2.0 this configura-
bility is used on both sides of the client/service connection:
the proxy in the client may use Jeri to talk to a service also
talking Jeri, or the proxy may talk JRMP to the service, and
so on.

However, there is no need for the service to be imple-
mented as a Jini service. The service endpoint just needs to
understand the protocol used by the proxy. Thus a Jini ser-
vice proxy using SOAP can directly invoke a UPnP service
without needing a Jini version of the service at all. While
this still requires Java on the client side to run the proxy, it
does not require Java on the service side.

4.3. Embedded lookup service

The standard configuration of a Jini “djinn” is have sepa-
rate clients, services and lookup services. In this mode, any
service must be able to handle a proxy from a lookup ser-
vice, requiring a Java runtime. However, it is possible for a
service to run its own lookup service: the service could have
a component that talks the Jini discovery protocol and on
demand (from a client) downloads a lookup service proxy
to the client. The service in this case would only need to
listen and respond to the Jini multicast discovery protocols
and these do not involve Java at all.

On request from a client, the service would need to
download a lookup service proxy. From the service view-
point, this is just a series of bytes obtained from serialising
the lookup service proxy. While this is generally produced
by a Java runtime serialising a Java object on the fly, it could
also be done by a Java process serialising the object at some
prior time and saving it in a file, while the service just deliv-
ers the byte stream from the file. So although a Java runtime
would be required at some preparation staqe, the service
would not need to be running Java in order to respond to
client requests and download a lookup service proxy.

4.4. Service proxy

Such a specialised lookup service could be primed to
“only” know about its own service. That is, in response

to a request from a client for a service, it could answer affir-
matively only if there is a match to the single service it rep-
resents. It could then return a proxy for the service. How
it gets this proxy is not fixed: it could get it from the Jini
service, or generate it directly itself. In the second case, this
could avoid unneccessary conversation with the service.

In Java 1.4 a new class was introduced, the Proxy class.
This class can be instantiated with a list of interfaces and
will return an object implementing all of those interfaces.
When a method is called on such an object it passes the call
to an invocation object and, as we have already mentioned,
this invocation object could make SOAP calls directly to the
UPnP service.

The result of these changes is to reduce object mobility
to that of Figure 2.

4.5. UPnP interfaces

A UPnP device and its services is defined by an XML
document, similar in intent to WSDL for Web Services [6]
but much more straightforward and better designed. When
a UPnP device advertises itself it includes the URL of its
device. UPnP devices use this to work out how to com-
municate with services. The URL for the device contains
URLs for the descriptions of the services it offers and also
URL endpoints for SOAP invocation of each service.

The service URLs can be used to generate suitable in-
terfaces for Jini services, and since the service descriptions
are often standardised by the UPnP Consortium they could
become “well known” Jini service descriptions.

The device URL could be included as part of the spe-
cialised Jini lookup service proxy so that when it is asked
for a service by a client it can examine the UPnP XML de-
vice and service description. From the service descriptions
it can tell what Jini service interfaces it offers, and from
the SOAP endpoints it can return a service proxy that can
communicate with the UPnP services.

4.6. Class files

The final component that distinguishes the Jini and UPnP
protocols is the Jini requirement to download class files that
a client does not already have. With Jini 2.0 this require-
ment has been greatly reduced from earlier versions since
the Proxy class can be used to generate a proxy on the fly,
and as this is part of Java 1.4 the client will already have its
classes and will not require a download. However, the client
will need to find the classes for the SOAP invocation layer.
If this becomes a common invocation class then clients may
have this class in their class files in future versions of Jini.
If not, then since the device has to run an HTTP server any-
way, the classes can simply be placed on its HTTP server
for downloading to clients.



LUS

UPnP
serviceclient

LUS proxy

service proxy

Figure 2. Reduced mobility for UPnP Services

5. Implementation

Based on the above considerations we have implemented
a set of Java classes that will perform the lookup service
role of Jini discovery and will return a proxy that can run
entirely within a Jini client. This lookup service proxy is
seeded with the URL for the device XML description. Upon
request from the Jini client, it can return a Jini service proxy
that implements all of the Java interfaces derived from the
UPnP services. This service proxy uses SOAP to commu-
nicate directly with the UPnP services.

We have designed the service-side classes to run in the
Cybergarage Java UPnP implementation [7]. Cybergaraqe
allows services and devices to be written in the Java SDK
and deployed within an IP network. it implements all of
the UPnP protocols, so that its services can be found and
invoked by UPnP clients. With the addition of our classes,
the services can also be found and invoked by Jini clients.

Note that this is an invasive mechanism: the UPnP ser-
vice needs to have code added to also make it into a Jini ser-
vice. However, the overheads of this are small, less than 15k
of class files. This is because UPnP already has to support
TCP, UDP and multicast protocols and we are just adding
support for another protocol and creating a lookup service
proxy just in order to serialise it.

Although our implementation runs within the Java Cy-
bergarage, this is done for convenience in serialising a
lookup service proxy on the fly. It would be a straightfor-
ward matter to add this to, say, the C++ version of Cyber-
garage or to use a different UPnP service platform such as
that provided by Intel [8]. This could reduce overheads to
a few thousand bytes. However, configuration and deploy-
ment would be a more complex matter.

6. Value of work

Jini has suffered by a lack of standards work for Jini de-
vices and device services, with a corresponding lack of ac-
tual devices. This work allows Jini to “piggyback” on the
work done now and in the future by the UPnP Consortium
and to bring a range of standardised devices into the Jini en-
vironment. Jini clients will be able to invoke UPnP services
in addition to services specifically designed for Jini.

UPnP is a device-centric service architecture. As men-
tioned earlier, there are now many service architectures, in-
cluding Jini, Web Services and Grid Services. These all
offer environments which include both software and hard-
ware services. However, for a client to use both a UPnP and
a Jini service has previously required the client to talk both
sets of protocols. Our work allows both types of service to
be handled within a single framework, that of Jini.

For example, a calendar service may be purely imple-
mented in software, but can be used to set the alarm on
hardware-based clocks. If the two types of service use dif-
ferent middleware systems then it increases the difficulty of
writing clients. Bringing UPnP into the Jini environment
makes it easier to write clients which can access all the ser-
vices from within Jini.

Note that it is not possible to bring general Jini services
into the UPnP environment due to the probable Java depen-
dencies of most Jini services.

7. Future Work

Our implementation uses Cybergarage for Java for the
services and Jini for the clients. These both require the
standard Java JDK. Neither of them will currently run on a
“lightweight” Java J2ME microedition machine such as the
KVM. Work is currently underway to adapt Cybergarage to
this VM. This means defining a new profile at least, since
there is no J2ME profile that supports multicast and the web
services profile is not rich enough for UPnP.

Getting Jini to work as a client on the KVM is more diffi-
cult since the KVM does not support dynamically changing
the class loader and the default loader does not support dy-
namic remote class loading [12]. However, the KVM spec-
ification states that an alternative default class loader may
be used, presumably to allow for small machines with dif-
ferent file systems. It may be possible to use a Jini-aware
class loader instead, but this will only work for specialised
versions of the KVM, not for those currently existing. Se-
curity issues for the KVM will also become more important
with such a classloader.

We have adopted an approach in which the lookup ser-
vice is embedded within the UPnP device. Other authors
have looked at bridges between middleware systems. A
third alternative would be a specialised Jini lookup service



that listens for UPnP device announcements and makes Jini
service proxies of the nature that we have discussed avail-
able to Jini clients. This would eliminate the invasive nature
of our current system, would not require custom coding, and
would allow Jini clients to talk directly to UPnP devices
without a third party in the middle. However, it would still
need a separate lookup service to be running.

8. Conclusion

We have discussed ways in which UPnP services can
also be made available as Jini services, with low overheads.
This can be done both for UPnP devices that understand
Java and for those that don’t. We have an implementation
for Java-aware devices. This has been shown to be of ad-
vantage both to Jini and to UPnP.

References

[1] UPnP Forum, UPnP Home Page,
http://www.upnp.org.

[2] K. Arnold, et al, The Jini Specification, 2 nd ed., Read-
ing, Mass.: Addison-Wesley, 2001.

[3] WW Consortium, Web Services Home Page,
http://www.w3.org/2002/ws/

[4] UPnP, “UPnP Device Architecture”,
http://www.upnp.org/resources/documents/.

[5] J. Newmarch, “A Jini Tutorial”,
http://jan.netcomp.monash.edu.au/java/jini/tutorial.

[6] WWW Consortium, “SOAP 1.2 Protocol,”
http://www.w3.org/TR/soap12.

[7] WSDL 1.0 Specification,
http://http://www.ibm.com/developerworks/web/library/w-
wsdl.html

[8] S. Konno, “Cyberlink for java”
http://www.cybergarage.org/net/upnp/java/index.html.

[9] Intel, “Intel Software for UPnP Technology”,
http://www.intel.com/technology/upnp/

[10] J. Allard, V. Chinta, S. Gundala, G. G. Richard III,
”Jini Meets UPnP: An Architecture for Jini/UPnP In-
teroperability,” Proceedings of the 2003 International
Symposium on Applications and the Internet (SAINT
2003)

[11] Sz Pota, K. Kuntner and Z. Juhasz, “Jini Network
Technology and Grid Systems” Proc. MIPRO 2003,
Hypermedia and Grid Systems, Opatija, Croatia, 19-
23. May 2003.

[12] Psinaptic “JMatos, Jini Network Tech-
nology for Embedded Processors”
http://www.psinaptic.com/j matos.jsp

[13] Sun MicroSystems, “J2ME Con-
nected Limited Device Configuration”,
http://java.sun.com/products/cldc/index.jsp


