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Abstract—With the increasing spread of computers and the internet
among culturally, linguistically and geographically diverse commu-
nities, issues of internationalization and localization and becoming
increasingly important. For some of the issues such as different scales
for length and temperature, there is a well-developed measurement
theory. For others such as date formats no such theory will be
possible. This paper fills a gap by developing a measurement theory
for a class of scales previously overlooked, based on discrete and
interval-valued scales such as spanner and shoe sizes. The paper gives
a theoretical foundation for a class of data representation problems.

Keywords—Data representation, internationalisation, localisation,
measurement theory

I. INTRODUCTION

For many years the problems of internationalization (i18n)

and localization (l10n) have been important to those who have

to prepare software or any kind of documentation for world

markets. With the rise of the World Wide Web this has become

an even more pressing issue, as the volume and scope of

information grows [1]. The “traditional” components of i18n

concern character sets, currency and number formats, etc. The

rules for different cultures can be complex and quite adhoc.

For example, while a currency amount in US dollars might be

written as “$1,234.56”, in France an amount would be written

as “1 234,56Fr” [2].

Many programming and delivery systems now have mech-

anisms for dealing with much of this by using locales [3]

to specify cultural, linguistic and geographic regions. The

World Wide Web Consortium has also addressed some aspects

of i18n with the ability to specify locale preferences and

information in HTML documents [4] and also with a Scenario

document discussing topics that web service designers should

be aware of [5]. Web backend systems such as JSP support

localization of Web pages through the JSP Standard Tag

Library [6]

On the opposite side, there has been centuries of work done

to standardise and provide a solid mathematical foundation for

“scientific” measures such as length, pressure, time, and so on.

This has been so successful that nowadays we scarcely think

of the issues involved.

There is a class of problems that falls between these two

extremes. It is typified by the examination by Tex Texin [7],

[8], [9] of the different scales used for shoe sizes in different

countries. Cultures have not co-operated to produce scales

which have any mathematical foundation. There is structure

to the problem, but no theory. The problem is conversion

between different scales which measure the same property in

quite different ways.

This paper provides the mathematical foundation to this type

of problem. We introduce the concept of weak measurement

in the context of example problems. We give representational

theorems to show that common practice has a theoretical basis

that extends beyond the examples.

The contribution of this paper is that it resolves some

issues in data conversion problems that arise primarily through

internationalization and extends the theory of measurement to

cover new cases. The theory is also applicable to other non-

cooperative systems, such as pay scales for different classes

of employee, or for approximations such as rounding currency

values. We show that there is a rigorous mathematical theory

which can cover these cases. The theory is not exhaustive and

we close with some further areas of investigation.

II. MEASUREMENT THEORY

There are many occasions in which we wish to quantify

some property. For example, the size of a shirt, the amount

of money in a wallet, your height. All of these measure the

value of a property using some units system: For example,

height is measured in inches, centimetres and so on. The

scientific, industrial and medical worlds abound in different

types of measurements, many of which are shown in the Units

of Measure Dictionary[10] lists and in the Unified Code for

Units of Measure [11].

A measure takes some property and evaluates it in some

scale system. Representational measure theory [12], [13],

[14], [15] is concerned with different axiomatisations and

developing a representation theorem for each axiomatisation.

For example, the simplest type of measure is the ordinal

measure which simply concerns a transitive order � on a set

X . A function f : X → ℜ is an (ordinal) measure if it satisfies

the axioms

∀a, b ∈ X, a � b → f(a) ≤ f(b) (1)

and

∀a, b ∈ X, f(a) ≤ f(b) → a � b (2)

For example, if one block of wood is shorter than another

block of wood, then the length of the first block measured

in centimetres will be shorter than the length measured in

centimetres of the second block.

All standard scientific measures satisfy these axioms: length,

mass, temperature, pressure and so on and usually satisfy addi-

tional axioms. Scales which are only ordinal include hardness

scales, intelligence quotients and so on, where the values don’t

really matter, just the ordering relationship between them.
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For an arbitrary relational stucture 〈X,�〉 the fundamental

questions are

• Does a measure function exist?

• What is the relation between any two measure functions

(i.e. what are the allowable transformations that preserve

the property of being a measure function)?

The simplest representation theorem for this structure is given

by [12] as their Theorem 1:

Theorem 1: Let X be a finite set and � a total order on X .

Then there exists a measure f satisfying axioms (1) and (2).

Further, if g is any other function also satisfying these axioms,

then there is a function h : ℜ → ℜ such that g = h ◦ f and h

is strictly monotonic.

The proof of the first part is constructive: assign the smallest

element the value 1, the next smallest the value 2 and so on.

The second part follows from the axioms and ensures that

we can convert between any two measures of a property such

as length (e.g. from centimetres to lightyears) without loss of

information by applying a suitable function. Note: Many texts

frame the theorem in terms of a weak order, and then use

the equivalence class of equal elements to transform this to

a total order in order to prove the theorem. We simplify the

exposition throughout by using a total order.

The theorem can easily be extended to weak orders on

countable sets.

The meaning of the theorem is that properties such as length

can have a variety of measures such as inches, centimetres and

so on. Firstly, such a measure must exist, and given any two

measures we can transform values from one to the other by a

monotonic function such as multiplication by 2.54.

Many of the measures of physical properties such as length

also have a binary operation (corresponding to addition of

lengths) and there are representation theorems for these ratio

scales. For example, for ratio scales such as length, the additive

properties of length are preserved beween different measures

(so that adding one inch is the same as adding 2.54 cms).

These representation theorems form the theoretical basis for

the algorithms used by Web sites such as “Unit Conver-

sion and measurement made easy” at http://01conversion.com/

which lists the categories Length, Mass, Area, Volume, Speed,

Temperature, Pressure and Power, and within the category

of Length will “Convert between angstrom, cable length,

centimeter, chain, fathom, foot, ...”. The representation the-

orems also form the basis for the XML “conversion of units”

documents[16] which define scale conversions such as

<UnitOfMeasure uid="m"> Metre

</UnitOfMeasure>

<UnitOfMeasure uid="ft"> US Survey foot

<ConversionToBaseUnit baseUnit="#m">

<numerator>12.</numerator>

<denominator>39.37</denominator>

</ConversionToBaseUnit>

</UnitOfMeasure>

TABLE I
SPANNER SIZES

measure (inch) mm UNF inch

.354 9 .

.375 . 3/8

.394 10 .

.433 11 .

.438 . 7/16

.472 12 .

.500 . 1/2

.512 13 .

.551 14 .

.563 . 9/16

III. WEAK MEASURE - MOTIVATION

Scientific scales have good mathematical properties and

theoretical background. Things such as date formats have

no properties. This paper addresses some cases where there

are apparent measures but which do not yet have a proper

theoretical background. The first of these cases concerns

discrete measures.

Nuts and bolts come in pairs: a metric 8mm bolt is best

turned with a metric 8mm spanner. The standard ISO bolt

sizes form a finite set {7mm, 8mm, 10mm, 11mm, 13mm,

14mm, 17mm, 19mm, 22mm, 24mm, 27mm}. There is an

obvious measure function into the millimetre scale, which

obeys axioms (1) and (2). The ISO bolt sizes form an ordinal

scale but not a ratio scale: you can’t add a 7mm and an 8mm

spanner to get a 15mm spanner!

There are other sets of spanners and bolts, with another main

group being the A/F spanners. These also form a finite set,

{1/4 inch, 5/16 inch, ...}. Again there is an obvious measure

function into the inch scale, and from there into the millimetre

scale (multiply by 25.4).

A partial table of spanner sizes is given in Table I. A full

table is given at http://www.vars.freewire.co.uk/tech/charts/

spanners.htm.

However, if you have a car with metric bolts and you only

have A/F spanners then you make do by choosing the smallest

spanner that will fit the bolt. For example, for a 9mm bolt you

would choose the 3/8 inch spanner. It isn’t perfect but will

often do. In the measure-theoretic terms we are proposing here,

the question arises: is the set of A/F spanner values a possible

measure for metric bolts? This question will arise whenever we

have discrete values of a similar property which have devised

different physical structures with different values. Note: This

is not a desirable situation, but arises when different groups

independently define different discrete systems.

The short answer is “no”. Between 1/2 inch and 9/16 inch

are two metric sizes, 13mm and 14mm. So both of the 13mm

and 14mm bolts will require a 9/16 inch spanner. (Similarly

between 10mm and 11mm.). That is, the function f from metric

bolts to A/F spanner sizes measured in inches has special

values

f(13mm) = 9/16

and

f(14mm) = 9/16
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which break axiom (2) of an ordinal measure (f(14mm) ≤
f(13mm) but 14mm 6� 13mm). While the physical require-

ment is for such a mapping, it is not a measure.

IV. WEAK MEASURE - DEFINITION

We drop the “only if” part of the measure definition to

define a weak measure.

Definition 1: A function f : X → ℜ is a weak (ordinal)

measure on a relational structure 〈X,�〉 if it satisfies the

axiom

∀a, b ∈ X, a � b → f(a) ≤ f(b) (3)

From the identity P → Q ≡ ¬Q → ¬P we can obtain

∀a, b ∈ X, f(a) < f(b) → a ≺ b (4)

so what we lose in a weak measure are the features associated

with equality. Essentially, a weak measure is a homomorphism

rather than an isomorphism so that properties such as

∀a, b ∈ X, f(a) = f(b) → a = b (5)

no longer hold.

To avoid possible confusion we will often refer to a measure

as a strong measure, to distinguish it from the weak measure

defined above. In order theoretic terms, a weak measure is a

monotonic fucntion into ℜ while a strong measure is a strictly

monotonic function into ℜ.

V. REPRESENTATION THEOREM FOR WEAK MEASURES

The case of spanners is just one example of a weak

measure, and we used its “natural” weak measure to justify

the definition. Another example might be the differing pay

scales for TAFE level teachers and University lecturers. Many

higher education institutions in Australia are “dual-sector”

- what should a TAFE teacher be paid when lecturing a

University course? These are examples of a weak measure

between two finite sets. Other common weak measures arise

through approximations to a larger set of values, such as giving

a person’s age in years (people with different birthdates can

have the same age), or rounding off sums of money to the

nearest dollar, where many different values are mapped onto

the same value.

In general it is necessary to prove the existence of a weak

measure and to detail its properties. This we do now. We

restrict our attention to finite sets for simplicity although the

results should be extensible to countable systems.

Theorem 2: Let X be a finite set and � a total order on X .

Then there exists a weak measure f on 〈X,�〉, which is also a

(strong) measure. Further, if g is any weak measure satisfying

axiom (3), then there is a function h : ℜ → ℜ from strong to

weak measures such that g = h ◦ f and h is monotonic.

This differs from Theorem 1 in dropping the strictness require-

ment from monotonicity.

Proof: Firstly, any measure f is also a weak measure, and

there is always a measure for such a relational structure, from

Theorem 1. Since f is an isomorphism, set h = g ◦ f−1. It is

straightforward to show that h is monotonic, while the example

of spanners shows that it need not be strictly monotonic.

R

R
Y

X

f: strong

g: weak
h: monotonic

f’: strong

k: monotonic

Fig. 1. Weak and strong measures

VI. DIFFERING MEASURE SETS

The size of a spanner measures the width across the spanner

flats. The A/F spanners form one set, the metric spanners

form another. Each set is ordered in size, and there are strong

measures from each set into length scales.

Using a spanner from one set for a bolt from another means

that we are performing a mapping from one spanner set to the

other. This mapping would be “sensible” in some sense, so that

we would choose the “next” size up rather than any other.

Alternatively, one might say that the bolt should be chosen

to be the next size down! Either way, the mapping should

preserve the order of the original set. A mapping k : X → Y

should satisfy the monotonic condition:

∀x, y ∈ X,x �X y → k(x) �Y k(y)

A monotonic function induces a weak measure in the

following way

Theorem 3: Let X and Y be two sets each with a total

order and let k : X → Y be monotonic. Then for any total

measure f ′ on Y , g = f ′ ◦ k is a weak measure on X

We can summarise the last two theorems in the commuting

diagram [17] of Figure 1. This figure can be read in many

ways, since the strong measures f and f ′ are invertible. If

we are measuring spanner sizes to find the right one, then we

are using the upper triangle g = h ◦ f . If we are defining a

relation between spanner sets, then we use the lower triangle

g = f ′ ◦ k. The commuting diagram links these two views,

so that for example, given k then for any strong measures

h = f ′ ◦ k ◦ f−1

VII. EXPLOITING STRUCTURE

The representation theorem for weak ordinal measures

shows that there is always a monotonic function from any

measure to any weak measure. Being monotonic is not a great

deal of help in practice, as there are many, many possibilities.

For example, a function that takes all metric bolts to 1/4 inch

is monotonic, but would be useless for turning bolts since a

spanner of that size is too small to fit em any metric bolts.

The size of a spanner is measured as a length property. In

general lengths are ratio measures, so that millimetres can be

converted to inches by simple multiplication. However, neither

set of spanners form a scale and this property does not appear

to be directly useful. However, we can use the fact that they

are both measured by lengths to embed them into a larger set

of all spanner sizes and then use the common length measure

to order them.

World Academy of Science, Engineering and Technology 62 2010

360



TABLE II
SPANNER SIZES

bolt (mm) spanner (inch)

9 3/8
10 7/16
11 7/16
12 1/2
13 9/16
14 9/16

Let 〈X,�X〉 and 〈Y,�Y 〉 be two relational stuctures and

consider the set Z = X ∪Y , along with a precedence relation

� on Z which coincides with the precedence relations on X

and Y . That is

∀a, b ∈ X, a � b ≡ a �X b (6)

and

∀a, b ∈ Y, a � b ≡ a �Y b (7)

〈Z,�〉 preserves order on the subsets X and Y while also

introducing order between the elements of the two sets.

For example, we can consider X to be the set of metric

spanners while Y is the set of A/F spanners and Z is the set

of both types of spanner, ordered by size. We now consider

the situation where we have no metric spanners, that is, all

spanners are mapped to A/F spanners. This implies a function

g : Z → Y which preserves order as much as possible but

also keeps the A/F spanners unchanged:

∀a, b ∈ Z, a � b → g(a) � g(b) (8)

∀a ∈ Y, g(a) = a (9)

It is then straightforward to show that for any measure f on

〈Y,�Y 〉 that f ◦ g is a weak measure on 〈X,�X〉. Further, if

we have an element x of X that is immediately bounded by

two elements a and b of Y then either x = a or x = b.

This substantially restricts the possible weak measures on

X . It includes the measure that maps metric sizes to the next

A/F up, the measure that maps metric sizes to the next A/F

down, or to any mix of up or down. This is quite satisfactory

for a general characterisation of weak measures on two finite

subsets of a third set.

If we want to go one stage further to a uniqueness type of

theorem, then we can do so by placing further restrictions on

the function g : X ∪Y → Y . For example, to gain uniqueness

of sizing spanners upwards:

Theorem 4: Let g : X ∪ Y → Y satisfy equations (8) and

(9). In addition, let g satisfy

∀x ∈ X, y ∈ Y, y ≺ x → g(y) ≺ g(x)

Then g is unique

This uniqueness theorem allows us to construct tables such

as the Table II, which maps metric bolts upwards to A/F

spanners, corresponding to the function k of Figure 1:

Similar tables could be constructed for payment scales for

TAFE teachers if the policy was to pay upwards for University

courses, although management would be more likely to use a

similar uniqueness theorem for payments downwards.

TABLE III
SHOE SIZES

English Paris Points mm

34 227
2 229

35 233
3 237

36 240
4 245

34 3635

2 3 4

237 245229

227 233 240

English size intervals

Paris Points size intervals

Fig. 2. Shoe size intervals

VIII. RELATION BETWEEN WEAK MEASURES -

MOTIVATION

In the previous sections we considered the relation beween

a strong measure and a weak measure. The case of shoe sizes

shows that we need to consider the relation between pairs of

weak measures. While Texin [8] gives a table of conversions

from one shoe measure to another, he also gives details on

how shoe sizes are calculated, which allows a more rigorous

analysis.

A small portion of the table of sizes as related to their actual

length measure in millimetres is shown in Table III.

Shoe sizes are based on the length of a person’s foot. For ex-

ample, the Paris Points size of 35 corresponds to a foot length

of between 228mm and 233mm. Thus we have a function

from lengths into the Paris Point sizes {34, 35, 36, ...}. This

is basically a step function. Using the “obvious” ordering of

34 ≺ 35 ≺ 36... it is a monotonic function

The function from foot length to English shoe sizes

{2, 3, 4, ...} is also monotonic. For example, any length be-

tween 230mm and 237mm maps onto 3.

The size measures the available space in a shoe. The correct

size has been chosen if a foot fits into the size, but not into the

next smallest one. So a “size three” foot will be bigger than

229mm but smaller than or equal to 237mm. This is shown in

interval format in Figure 2.

There is a strong measure from Paris Points sizes into any

length scale. For example, in the millimetre scale, a Paris

Points size of 35 has a value of 233. Similarly there is a

strong measure from English shoe sizes into the millimetre

scale, with an English shoe size of 2 having a value of 229.

Consequently, from Theorem 2 there is a weak measure from

foot lengths to Paris Points lengths, and another from foot

lengths to English lengths.

A Continental buyer who is using the internet to buy shoes

from England may be faced with the following question: “I

normally buy shoes with Paris Points size of 35. What is the

corresponding English size?” Conversion of shoe sizes from

one scale to another, such as Paris Points to English sizes

is then a mapping between two weak measures. However,
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R

R
Y

X

Z

strong

weak

strong

weak

strong

R

mono

mono

mono

mono

Fig. 3. Mapping between weak measures

this mapping is not functional: a Paris Points size of 35
corresponds to a foot length of between 228mm and 233mm

and this could map to an English size of 2 or 3.

The question of mapping Paris Points sizes into English

sizes can be answered with reference to Figure 3. The top

rectangle of this figure is just Figure 1, as is the bottom

rectangle. The curved arrow on the left is the mapping

between the Paris Points set {34, 35, 36, ...} and the English

set {2, 3, 4, ...}, while the curved arrow on the right is the

mapping between the two different weak measures.

IX. RELATIONS BETWEEN WEAK MEASURES

Theorem 5: Let g1 and g2 be two weak measures on

〈X,�〉. Then

∀a, b ∈ X, g1(a) < g1(b) → g2(a) ≤ g2(b)

Proof: If g1(a) < g1(b) then a ≺ b and so g2(a) ≤ g2(b)

Thus any two weak measures keep the same order, but pos-

sibly with some overlap. The inequalities cannot be tightened.

For example, lengths of 229mm and 233mm are both Paris

Points of 35 but are of English sizes 2 and 3 respectively.

We first deal with the curved arrow on the right-hand side of

Figure 3. We seek to find a version of the monotonic Theorem

2 between two weak measures. Suppose g1 and g2 are two

weak measures. Then from theorem 2 there is a strong measure

f and monotonic functions h1 and h2 such that g1 = h1 ◦ f

and g2 = h2 ◦ f . As h1 is not strictly monotomic, we cannot

take its inverse as a real-valued function. But we can define

an inverse set-valued function

h−1

1 (x) = {y : h1(y) = x}

We can then form h = h2 ◦ h−1

1 as a set-valued function and

then for any x ∈ X

g2(x) ∈ h ◦ g1(x)

We make this clearer by example. A size 36 Paris Points

shoe has a length in millimetres of 240, and any foot with

a millimetre length between 234 and 240 will have a weak

measure of 240. The inverse function h−1

1 will be

h−1

1 (240) = {x : x ∈ [234, 240]}

TABLE IV
SHOE SIZE CONVERSION

English Direction Paris Points

3 → 35, 36
3, 4 ← 36

h2 will map these values to the weak English millimetre

lengths of {237, 245}. That is, lengths of between 234 and

237 will map to the length of the English shoe size 3 with

length 237, while lengths of between 238 and 240 will map

to the length of the English shoe size 4, which is 245. That is

h2 ◦ h−1

1 (240) = {237, 245}

Having established a set-mapping from one weak measure

to another, we now look at its properties. We need a generalisa-

tion of pointwise monotonic functions to set-valued functions,

which we call set-monotonic.

Given a relational stucture 〈X,�〉 with total order � we can

create a new relational stucture
〈

2X ,�
〉

on sets of elements of

X with an induced partial order. For example, we want to be

able to say that {1, 2, 3, 4} ≤ {3, 4, 5} but {1, 2, 4} 6≤ {3, 4, 5}
since in the second case 3 is not in the first set.

Definition 2: Given two subsets A and B of X , define A �
B if

∀a ∈ A,∀b ∈ B, either a � b

or a ∈ B and b ∈ A

We can then define a property of set-monotonic by

Definition 1: A set-valued function h from X into 2Y is

set-monotonic if

∀x, y ∈ X,x � y → h(x) � h(y)

using the induced set relation above. It is strictly set monotonic

if the inequality is replaced by a strict inequality.

Then we have

Theorem 6: Let h1 and h2 be two monotonic functions and

let h be the set-valued mapping h = h2 ◦ h−1

1 . Then h is set-

monotonic

Proof: If a < b, then h−1

1 (a) ≺ h−1

1 (b) and then h2 ◦
h−1

1 (a) � h2 ◦ h−1

1 (b)
Now we can turn to the curved arrow on the left-hand side

of Figure 3. Once we have defined a mapping between two

weak measures then we can use the strong measures f1 and

f2 to “pull back” the mapping between weak measures to the

mapping between the sets Y and Z:

Theorem 7: Given h as above, define h′ : Z → Y, h′ =
f−1

2 ◦ h ◦ f−1

1 . Then h′ is a set-monotonic function.

This theorem then allows to write the table of shoe size

conversions as in Table IV. Any other mappings beween weak

measures would have a similar representation.

X. IMPLEMENTATION ISSUES

The focus in representational measurement theory is the

existence of, and mappings between, strong measures. The

site http://01conversion.com allows one to translate values

from one scale ot another. In a similar vein, the site http:

//www.xe.com allows one to translate money from one scale

World Academy of Science, Engineering and Technology 62 2010

362



(e.g. US dollars) to another (e.g. euros). Bobbit[16] makes

such scale transformations more explicit by defining functions

of the form

Y = (A + B × X)/(C + D × X)

This will handle many scale transformations but not even all

scientific ones: it fails to accomodate the logarithmic scale

transformations such as bel to sound intensity.

In this paper we have considered transformations involving

weak measures. if we follow a similar pattern to the above,

then for strong to weak transformations we would look for

a way of specifying the monotonic function h on the right

of Figure 1. This is straightforward, but would miss the

motivational point. What we would like to specify is the

monotonic function on the left of Figure 1. The theory requires

the right-hand side to justify the left-hand side, but once given

the left-hand side we can deduce the monotonic function to

the right.

That is, for a weak measure we would like to specify the

mapping from one source set to another, as in metric spanners

to A/F spanners. This could be simply a lookup table of metric

values to A/F values.

In the case of mappings between weak mappings, again we

are less interested in the right-hand curved arrow of Figure 3

and more interested in the curved arrow on the left-hand side

of the figure. Given the left-hand side function, the right-hand

side function follows. Again, this is a simple lookup table but

the values are set-values rather than simple values.

Such lookup functions can be easily written in any program-

ming language, and could for example be functional Javascript

[18] embedded in HTML pages.

XI. FURTHER WORK

In practice, shoe and feet sizes are not rigid. A person

can squash into a shoe that is too small, or pad a shoe that

is too large. This suggests that it may be worth extending

the theory of measurement to fuzzy sets, in particular to

fuzzy intervals. The enticingly titled ”Fuzzy Measure Theory”

by Wang and Klir[19] is actually about extending the Borel

measure theory to fuzzy sets and has nothing to do with

representational measurement theory. The paper by Dubois et

al[20] states that a thesis by X Wang identified forty different

methods of comparing fuzzy intervals. Clearly there will be

considerable complexity in extending measurement theory to

fuzzy intervals.

Currency transactions appear to be related to scale trans-

formations, in that money in one currency can be converted

to another currency. However, such transactions are functional

but not invertible: if you transfer from one currency to another

and then back again you end up with less than you started with.

This is not covered by the theory given here.

XII. CONCLUSION

This paper has discussed a class of “measures” that require

a weakened definition of representational measure. We have

defined the concept of weak measure and given representation

theorems for weak measures. We have also discussed trans-

formations between strong and weak measures, and between

weak and weak measures. Weak measures often arise due

to transformations between “inompatable” sets, and we have

shown how specification of such transformations can lead to

weak measures. Finally, in discussing implementation issues,

we have shown that simple mechanisms will suffice.

This work is of particular interest to the internationalisation

community, since weak measures may easily arise due to inde-

pendently derived measurement systems. However, whenever

approximations to values are done, weak measures may also

occur, and this area may also be important.
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