
Using tcl to Replay Xt Applications

Jan Newmarch

Faculty of Information Science

and Engineering

University of Canberra

PO Box 1

Belconnen

ACT 2616

email: jan@ise.canberra.edu.au

Paper presented at AUUG94, Sept 1994,

Melbourne, Australia

ABSTRACT

Testing of X Window applications is often done using a low-level approach of

synthesing X events, sending them to the application, and testing the result by compar-

ing screen dumps. This paper describes a system that uses the object structure of Xt

widgets to give a higher-level system. It uses the language tcl as the object action

description language.

1. Introduction

In order to perform regression testing and to give

automated demonstrations of X Window applica-

tions, it is neccessary to have some means of

replaying X ‘‘input’’ events. That is, what would

normally be user interaction with the application

by mouse and keyboard must be simulated by

some means. The X Window System supplies a

simple means to do this in that actual X events

may be prepared and sent to an application using

XSendEvent() [1]. However, this is a rather low-

level approach in some instances. It depends on

windows being in particular locations and of par-

ticular sizes [2, 3]. Since such resources are often

under the control of the user of an application

through the X resource database, there is no

guarantee that the events go to the correct place

in a window.

Similarly, to examine the resulting system, com-

parison of screendumps may be used. This is

ev en more fragile, as it depends additionally on

fonts used, the colormap in use, etc. It is akin to

comparing files of Ascii text which may differ if

they hav e been shown on orange instead of green

screens!

Applications based on the Xt Intrinsics use

graphical objects called widgets, such as Lists,

Labels, Text objects, etc. [4] The user interaction

with such objects is at a higher level than that of

clicking mouse buttons and pressing keys - the

user selects a List item, or enters text into a Text

object. The widgets themselves use this higher-

level structure, by responding to actions such as

‘‘select item’’, ‘‘insert text’’, and so on.

In addition to this higher-level interaction, Xt

objects are highly configurable, so that, say, a

demonstration run by one user may have an

apearance quite different to that run by another.

Such differences are not only in colours and

fonts, but may also involve size and geometric

relation between component objects. Simulation

methods that involve X events have to take this

into account by suitably adjusting geometry of

the events - it is not enough to just replay a set of

ev ents without modification.



-2-

This paper reports on a project that uses the

object nature of Xt widgets to give a suitable

replay language for events. The next section

describes the components of Xt that allow this to

be done. This language is based on the com-

mand language tcl [5], and this is briefly

described in section three. Sections four and five

describe how these are integrated to form the

replay language. Sections six to eleven describe

additional mechanisms to make this functional,

and section twelve describes some implementa-

tion details.

2. Action procedures

Users get widgets to do things by use of the

mouse and keyboard. The widget writer defines

the effect of user actions by setting up transla-

tion tables that relate the user originated mouse

and button events to widget actions, which in

turn is related to widget code by action tables.

The widget action functions will often invoke a

set of callback functions. The application pro-

grammer will have created callback functions to

reflect application functionality.

There is a set of action functions for each widget.

In a well designed widget class everything that

can be done to a widget is accessible through one

of these action functions. For some widgets this

set is small (eg for the Label widget described in

Asente and Swick there are no actions) to very

large (eg the Motif Text widget has nearly ninety

covering actions such as scrolling, deleting,

inserting, etc). The set basically forms the wid-

get-specific set of object methods and gives it the

characteristic behaviour of the class.

3. Tcl

Tcl is a language designed to be used as an

embedded command language. It has simple

syntax but a well-developed set of control struc-

tures. The syntax is a cross between C and the

csh, with some syntactic problems of the shell

cleaned up (such as [...] for grave ‘...‘ com-

mands). A typical example reads a set of inte-

gers from standard input, one per line, and prints

the maximum:

proc max {x y} {

if {$x < $y}

return $y

return $x

}

gets stdin maximum

while { [gets stdin val] != -1} {

set maximum [max $val $maximum]

}

puts stdout "largest is $maximum"

An application is made ‘‘tcl aware’’ by creating a

tcl interpreter and then calling this to execute a

script of tcl commands. This script in turn may

execute C code to read/write from files, process

X events, or whatever else is desired. The lan-

guage is extended by defining new tcl commands

to the interpreter and registering the C code with

it to execute when the tcl command is called.

The advantages of tcl over a proprietary language

are numerous. Tcl is now becoming a common-

place language for embedded applications so the

learning curve between applications is reduced. It

is also an open language with published source

code so that ambiguities or difficulties may be

quickly resolved. The fact that tcl has full lan-

guage capabilities allows for flexible use beyond

initial planning. For example, in this system it

can allow stress testing by placing replay state-

ments within a loop, or arbitrary analysis of

results on completion.

4. Widget naming

Widget names are translated into widgets using

the XtName() function. This uses a widget as

root and uses the Xt pattern matching for widget

names. This consists of a dot ‘.’ separated list of

widget names in the tree down to a widget, or a

star ‘*’ pattern match of elements in this path.

The root used in this system is the toplevel

ApplicationShell widget that is used as a parame-

ter to initialise the ReplayXt library.

5. Replay mechanism



-3-

The Intrinsics supply a function XtCallAction-

Proc(). This function takes a widget and the

name of an action and invokes the corresponding

action function on the widget. In object terms,

this calls a method for the object. This method

may change the appearance and properties of the

widget, and in addition will call application-

specific callback functions. Thus this function

allows full access to simulation of user activities.

Simulating a set of user actions can be done sim-

ply by performing a set of XtCallActionProc()

calls with suitable arguments.

Performing this set of action function calls in a

simple manner is then the key to a simple simula-

tion system. The set should be stored in an exter-

nal file so that it can be easily modified for differ-

ent simulations. Certainly, this would not be

something that you would want to code in C! In

addition, the mechanism must work simply

enough that it can be used without alteration of

the application between production use and such

simulation.

It is easy to set up a mechanism using application

resources to turn on and off a flag setting simula-

tion. Tcl is used to satisfy the other requirements.

An application creates a tcl interpreter and regis-

ters a new tcl command with it: callActionProc.

This is linked to C code that takes two argu-

ments, a widget name and an action, and per-

forms the following:

1) finds the actual widget using XtName-

ToWidget().

2) prepares suitable parameters for the

XtCallActionProc() function.

3) calls XtCallActionProc().

A typical sequence of actions would be

callActionProc rowcol.top_button Arm()

callActionProc rowcol.top_button Disarm()

which would call the two actions Arm() and Dis-

arm() on the widget with name row-

col.top_button. The interpreter is initialised to

read the commands from the external file and

execute them.

As each action is executed the widgets will do

something, including calling application code,

which in turn may perform other actions, includ-

ing creating dialogs or other widgets. During all

of this the application and widgets must be able

to respond to server events (such as Expose).

Thus after an action is performed control must

pass back to the Intrinsics event processing loop

for proper processing of such events. The mech-

anism whereby this is done is described in the

section on Implementation.

6. Preparation of X events

The XtCallActionProc() function has as one

parameter an X event, which is normally the X

ev ent that triggered the action. In this system, of

course, there is no such event, so an event may

need to be manufactured. Most action proce-

dures ignore the event, so for these nothing needs

to be done. An example of where the event is

used, though, is the Activate() action of the Motif

PushButton. This action is usually called when

the user releases the mouse button after having

pressed it on the PushButton. If the mouse but-

ton is released inside the widget, the callbacks on

the XmNactivateCallback list are called, other-

wise they are not. The Motif implementation of

this action examines the x and y coordinates of

the event. In a similar manner, the Text widget

determines what string was typed when an

insert-string() action is invoked in order to insert

the correct text.

Unfortunately, there is no documentation cover-

ing what exactly is required from an X event.

Nevertheless, this system allows an X event to be

generated with appropriate fields set. This is

done by adding parameters to the callActionProc

function which define the fields. For example,

callActionProc rowcol.top_button Activate() \

-type ButtonRelease -x 0 -y 0

7. Warping the pointer

In order that the simulation have an adequate

appearance, the mouse pointer should often be

moved. For example, it should be moved over a



-4-

button before the button is pressed. The warp-

Pointer command is defined in tcl which takes a

widget and the x and y co-ordinates within the

widget to move to.

8. Sleeping

For testing, it probably does not matter too much

how fast the simulation runs. For demonstrations,

it is rather critical that the actions be replayed at

a suitably slow speed. A sleep command is avail-

able that pauses the replay of actions for the

given interval. This is done in a way that allows

normal processing of X events to occur, and is

further described in the section on Implementa-

tion.

9. Getting resource values

Whn a user presses a mouse button over an

object such as a PushButton, there is usually an

attempt to get the pointer near the middle of the

object, or at least away from its edges. It would

certainly not look very nice to press a Motif

PushButton at its very top corner (co-ordinates

(0, 0)) as this would be well in the widget’s bor-

der area. To move the pointer to the centre

requires that the current dimensions of the object

be known. The system contains a tcl interface to

XtGetValues() to allow queries for resources such

as width and height.

getValues $widget -width w -height h

stores in the tcl variables w and h the width and

height of the widget. These can then be used in

later calls such as to warpPointer

set mid_x [expr $w/2]

set mid_y [expr $h/2]

warpPointer $widget $mid_x $mid_y

In addition to preparation of actions and pointer

movement, this facility is also needed for testing

the state of widgets in the application to ensure

that they hav e the correct values of the resources.

10. Gadgets

Gadgets were designed as lightweight objects to

take memory and processing load away from the

X server and place it back on the client side.

Improvements in server technology have reduced

the need for gadgets but they nev ertheless remain

in toolkits such as Motif. A gadget does not have

windows, and it does not handle input events. It

does not possess any actions since it does not

handle input events, so the method described

above does not work directly.

The means by which a gadget reacts to input

ev ents are not specified by the Intrinsics. Instead,

in some manner, the gadget’s parent container

must handle them. This may be done in different

ways depending on the toolkit and on the regular-

ity of implementation within the toolkit. The

remainder of this section discusses the Motif

toolkit [6].

Motif defines a set of actions on the Manager

widget which acts as a superior class for all

Motif containers. These actions are specifically

to handle gadgets. When a button press or other

ev ent occurs within the Manager it will examine

its own translation table to call an appropriate

action. For an action such as button press (using

the default translation) this will call the action

ManagerGadgetArm(). The purpose of this func-

tion is to determine if the event occurred within a

gadget and if so to call an appropriate function

within the gadget. Effectively, the Manager is

acting as a translation table manager for the gad-

get.

In order to determine whether or not the event

occurred within a gadget, the x and y fields of the

ev ent must be examined. In our system, we have

no actual events since we are faking input, so

suitable events must be created. This can be done

exactly as above. There is one problem: these

coordinates are with respect to the Manager wid-

get, not internally to the gadget, so to direct

actions to a particular gadget we must find its

coordinates within the Manager. Howev er, this

can be done simply by getting the x and y co-

ordinates of the gadget g within its manager m:



-5-

getValues $g -x x -y y

callActionProc $m ManagerGadgetArm() \

-type ButtonPress \

-x $x -y $y

11. Rule sets

tcl allows procedures to be defined to give struc-

ture to programs. This can be used to group

actions into more meaningful sequences. For

example, the following procedure can be used to

perform a ‘‘button click’’ on a widget such as a

Motif PushButton:

proc buttonClick {widget} {

global DOWN_TIME

getValues $widget \

-width w -height h

set mid_x [expr {$w / 2}]

set mid_y [expr {$h / 2}]

# move pointer to middle

warpPointer $widget $mid_x $mid_y

# press

callActionProc $widget Arm() \

-type ButtonPress \

-button Button1 \

-x $mid_x -y $mid_y

sleep $DOWN_TIME

# release

callActionProc $widget Activate() \

-type ButtonRelease \

-x $mid_x -y $mid_y

}

Procedures such as these could be stored in a

rules file which would be loaded into the tcl

interpreter before the data file is read.

12. Non-structured objects

Xt uses widget and gadget objects that can be

handled as described above. Unfortunately,

some widget sets use widgets that have internal

structure that is not visible via Xt objects. A tyi-

cal example is the Motif List widget. What

appear to the user to be component objects, the

elements of the list, do not appear as objects

within this widget.

When the user selects an item, the List widget

has to perform internal calculations to determine

which item is actually pressed. This calculation

is based on such things as the number of items

showing and the total visible height of the List.

In order to prepare a suitable action for such an

object, we need to reverse this calculation in

order to determine the correct y value to give an

item. This is regrettable for many reasons.

The previously described getValues method is

also needed here, to extract resource values from

the List. It is best to capture this in a procedure

as in:

proc indexToY {w n} {

# calculate the Y co-ord in widget

# w for an index n in the list

getValues $w \

-height h -itemCount count

set y [expr {(2*$n - 1) * $h / (2*$count)}]

return $y

}

13. Implementation

The naive approach is to simply read and execute

a file of the actions that the application has to

perform. This is quite unsatisfactory. The tcl

source command is an atomic command as far as

processing X events from the server, so that

while the tcl commands in the source file are

being executed, no X events are processed. At

best they would all be queued. Then after execu-

tion of the actions was over, all the queued events

would be processed. The application would ini-

tially appear to be frozen, and then respond in a

flurry of activity.

To avoid this, it is necessary to allow the X event

loop to be called frequently to process queued

ev ents. The most common ways of doing this



-6-

both involve breaking a large atomic process into

a set of smaller processes. Each of these can be

called using timer events, with each process

scheduling the next, or by using work-

procedures, where the flow from one to the next

is similarly maintained.

In order that the application does not just ‘‘rush’’

through its actions, it is neccessary to delay

actions and run them at timed intervals. This

cannot be done using the system call to sleep as

this would stop the application from responding

to X events while waiting. This precludes

workprocs, and makes timers look attractive.

Unfortunately there is no simple way to break

evaluation of a set of commands by a tcl inter-

preter into a set of separate evaluations.

An initial attempt was made to read the file, stop-

ping reading and evaluating when a complete

command is ready (i.e. read a command, execute

it, read another, etc). This also proved unsatis-

factory. A complete command may be a proce-

dure call containing many other commands, and

this approach is unable to penetrate to the inter-

nal structure. This means that a set of commands

containing delays may work ok, but placing them

in a procedure would lose control of the delays.

Similar behaviour occurs with any other com-

pound structure such as loops.

The alternative to these is to take control of the X

ev ent loop explicitly. That is, at suitable points,

call the Xt event processing commands. Tcl con-

tains a ‘‘trace’’ mechanism which calls a tracing

function before executing any command. By

making this function process any queued X

ev ents, the finest granularity of both tcl and Xt is

gained. Execution delays can be managed with-

out degrading response by entering an event loop

for the period of the delay, with the delay end

signalled by an Xt timer event.

14. Send

The most common use of this system is expected

to be by reading a file of rules and a file of replay

commands. This is a rather static situation.

The Tk widget system introduced a communica-

tions primitive called send between Tk applica-

tions. This allows one Tk application to send tcl

commands to another for execution in the second

application. An example use is a debugger send-

ing commands to an editor to step through the

file.

The send command has been ported to Xt by the

author as a separate library. This is linked in with

ReplayXt so that a Tk application or an Xt appli-

cation with send can send commands to an appli-

cation linked with this system. This will allow

one application to invoke commands, which here

would most likely be actions, and also to query

the application for resource values. This allows

an easy way for, say, a debugger written in Tk to

control an editor written in Motif.

15. Status

The software has been released into the public

arena, and is available from sites such as

ftp.x.org. The version at the time of writing is the

initial version, 1.0.

16. Future work

The Intrinsics supply a function XtAppAddAc-

tionHook() which can be used to attach a

‘‘record’’ function each time an action is

invoked. This allows an application to record for

later play. Experiments are being performed to

determine the best way of outputting a script for

later replay. Dumping actions using events with

hard-coded x and y values, for example, is quite

easy, but suffers the problems of resizing. It is

necessary to extract context information so that

the event description will really be ‘‘half way

down’’ the widget instead of 20 pixels, say.

In a similar way, comparison of pixmap dumps

of windows is quite feasible but too restrictive. A

means is needed to perform ‘‘feature extraction’’

for meaningful comparison.

Some applications use multiple toplevel Applica-

tion shells. These are typically applications run-

ning across multiple displays. A mechanism to

allow switching between widget trees is under

investigation.

Finally, the capability to define rules by proce-

dures leads to a search for suitable rules. Some,



-7-

such as the indexToY for Motif List are quite

straightforward. Others may be less so.

17. Conclusion

This paper has described an object-oriented

means of controlling the replay of Xt-based

applications using a standard and readily accessi-

ble command language. This allows for demon-

stration or for testing of applications in a simple

manner.

18. References

[1] R. W. Scheifler, J. Gettys and R. Newman,

X Window System - C Library and Proto-

col Reference, Digital Press, 1988

[2] A. Azulay, Automated Testing for X Appli-

cations, X Journal, May-June 1993

[3] L. R. Kepple Testing GUI Applications, X

Journal, July-August 1993

[4] P. Asente and R. Swick, X Window System

Toolkit, the Complete Programmers Guide

and Specification, Digital Press, 1990

[5] J. K. Ousterhout, Tcl: an Embeddable

Command Language, Proc USENIX Win-

ter Conf, 1990

[6] Open Software Foundation, OSF/Motif

Programmer’s Reference, Prentice-Hall,

1993


