
A Bridging Service Cache Manager:

A Custom Lookup Service for UPnP Services

and Jini Clients

Abstract. There are multiple middleware systems and no single system
is likely to become predominant. There is therefore an interoperability re-
quirement between clients and services belonging to different middleware
systems. Typically this is done by a bridge between invocation protocols.
In this paper we introduce a new design pattern based on a bridging ser-
vice cache manager and dynamic proxies. This is illustrated by a custom
lookup service which allows Jini clients to discover and invoke UPnP ser-
vices. This approach avoids some of the complexity of earlier approaches
and demonstrates a technique that can be employed to bridge between
services of any type and clients supporting downloadable proxies, such
as Jini.
Keywords: Middleware, UPnP, Jini, Service oriented architecture

1 Introduction

There are many middleware systems which often overlap in application domains.
For example, UPnP is designed for devices in zero-configuration environments
such as homes [1], Jini is designed for adhoc environments with the capability of
handling short as well as long-lived services [2] while Web Services are designed
for long running services across the Web [4]. There are many other middleware
systems such as CORBA, Salutation, HAVi etc each with their own preferred
application space, and these different application spaces will generally overlap
to some extent.

It is unlikely that any single middleware will become predominant, so that
the situation will arise where multiple services and clients exist but belonging
to different middleware systems. To avoid middleware “silos”, it is important to
examine ways in which clients using one middleware framework can communicate
with services using another.

This issue is not new: the standard approach is to build a “bridge” which
is a two-sided component that uses one middleware on one side and another
middleware on the other. Examples include Jini to CORBA [6], Jini to UPnP
[14], SLP to UPnP, etc. These essentially replace an end-to-end communication
between client and service by an end-to-middle-to-end communication, where
the middle performs translation from one protocol to the other.

While the invocation protocol is usually end-to-end, the discovery protocol
may be either end-to-end as in UPnP or involve a third party. Dabrowski and
Mills [13] term this third-party a service cache manager and a major example
of such a manager is the Jini lookup service. In an end-to-end discovery system



the bridge will also need to understand both discovery protocols, while with a
service cache manager the bridge will need to understand how to talk to the
service cache manager.

Newmarch [7] has investigated how a Jini lookup service can be embedded
into a UPnP device to provide an alternative to the bridging architecture. How-
ever, this is an invasive mechanism which requires changes to the UPnP device
and cannot be easily retro-fitted into devices.

In this paper we explore the role of a service cache manager in more detail and
show that under certain conditions the bridging role can be placed in the service
cache manager. The resulting system does not need a separate invocation bridge
component and so is often simpler than a standard bridge system. We consider in
detail how a custom service cache manager can be built that can handle both the
Jini and UPnP discovery protocols and from there how a custom downloadable
proxy can be used to handle the invocation protocol. The implementation of
this builds on open source software and is leading to a standardisation of UPnP
devices as Java interfaces within a service-oriented framework.

The principal contribution of this paper is that it proposes and demonstrates
another architectural pattern that can be applied to bridge between different
middleware systems. The validity of this pattern is demonstrated by an im-
plementation of a lookup service for UPnP services which can be used by Jini
clients.

The structure of this paper is as follows: the next section gives background for
UPnP and Jini. We then follow that with a discussion of architectural considera-
tions. Section 4 discusses our proposed system and section 5 the implementation
of this system. Then we assess the system, and in section 7 consider the value
of this work and the context in which it could operate.

2 UPnP and Jini

2.1 UPnP

UPnP is designed as language agnostic middleware particularly suited for small
network-aware devices in a zero configuration environment. A typical example
of such an environment is the future home, where many mundane devices such
as light switches, air conditioners, etc, through to more sophicated devices such
as A/V storage devices will exist, all with IP networking capability. Other pos-
sibilities include automobile systems or sensor networks which require minimal
configuration.

UPnP devices advertise themselves by multicast [8]. Muticast scope typically
limits advertisements to the local network. UPnP devices have no protocol for
unicast advertisements beyond this scope. Clients searching for UPnP devices
also make requests by multicast, and again there is no unicast mechanism.

Advertisements and searches are performed by using a protocol derived from
the principles of HTTP requests, but adapted to multicast: text based messages
using a small number of verbs. Advertisements provide information about ser-
vices by giving basic device and service information while providing URLs for



further information such as how to control the device. These protocols, known
as HTTPMU and HTTPU have been prescribed by the UPnP consortium.

Services on a device have functions that can be called directly and events
which can be delivered to listeners. Service functions are invoked by SOAP calls,
a protocol borrowed from Web Services [9]. In addition, UPnP devices maintain
state, and changes of state are signalled by changes in state variables. These
changes are notified by unicast to a list of listeners who have explicitly subscribed
to state changes.

UPnP advertisements and messages are illustrated in Figure 1.

point
control
UPnP

service
UPnP

SOAP request

SOAP response

NOTIFY event

advert
Multicast

Fig. 1. Messages in UPnP

2.2 Jini

Jini is Java-specific middleware [3]. It relies on clients able to interpret Java
bytecodes. It is designed for a general purpose environment, able to take advan-
tage of multicast and zero configuration environments and yet also has unicast
mechanisms for general internet services.

Jini has been used to build systems on both an enterprise and local scale,
sometimes involving hardware, sometimes just software services. Some systems
built on Jini were described at the Eight Jini Community Forum [10] and include
a real-time telemetry system for F1 racing cars, Nedap AEOS distributed secu-
rity system, and FETISH to provide travel agency services across the European
Union.

Jini makes use of a service registry called a “lookup service”. Services and
clients find a lookup service by local multicast or by unicast to known locations.
Services register themselves with a lookup service and clients ask it for suitable
services. Services are stored and moved around the network as Java marshalled
objects, and are downloaded to clients where they run in the client’s Java virtual
machine.

Typically, a client will download a proxy for the service which will commu-
nicate using a protocol such as RMI back to the service. However, Jini does
not mandate any particular proxy/service structure or communication protocol
between them. While it happens to be most common and convenient to use RMI
proxies communicating using an RMI protocol, other possibilities can exist.



Some services can also generate events, and clients add themselves as event
listeners by sending a client proxy to the service. Again, while there is much flex-
ibility possible, RMI proxies are usually sent. A typical system showing mobility
of objects using JRMP or Jeri is shown in Figure 2. The resultant communica-
tion protocol between objects is not prescribed by Jini, although most commonly
this is either JRMP or Jeri.

client
LUS proxy

service proxy

client proxy
listener

client proxy
listener

service proxy
LUS

service
LUS proxy

Fig. 2. Mobile objects in Jini

Newmarch [7] discusses in detail similarities and differences between UPnP
and Jini. Briefly, Jini can handle all of the UPnP data-types, but not vice-versa;
Jini relies on mobile code whereas UPnP relies on URL’s for XML documents
and service end-points as shown above.

3 Architectural considerations

3.1 Service cache manager

Service cache managers are expected to store “services” in some format and
deliver them to clients. The stored service can be a simple name/address pair as
in naming systems such as Java RMI or CORBA, complex XML structures linked
to WSDL URLs for Web Services in UDDI directories, or other possibilities. The
Jini lookup service stores service proxy objects, along with type information to
locate them.

When clients and services are trying to locate a service cache manager, there
is often an assumed symmetry, that the client and service are searching for the
same thing. In our examples above, this occurs in all of naming services, UDDI
registries and Jini lookup services.

Once found though, clients and service do different things: services register
whereas clients look for services. The Jini ServiceRegistrar for example con-
tains two sets of methods, one for services (register()) and one for clients
(lookup()). A service is searching for a service cache manager in order to regis-
ter itself while a client is searching for a service cache manager in order to look
up services. Conceptually, there should be one protocol for services discovering
caches and another for clients discovering them, with different interfaces exposed
to each.



3.2 Announcement versus discovery

UPnP services announce their presence by multicast advertisements. UPnP clients
discover services by multicast searches. Jini clients and services discover lookup
services by multicast discovery, or a lookup service can announce itself by a
multicast advertisement. While all of these use multicast, there is a directional-
ity component of information flow that is usually not shown. In announcement,
the information flow is outwards from the multicast source, while for discov-
ery it is inwards towards the source. The flows for Jini and UPnP are shown
diagrammatically in Figure 3. There is nothing inherently good or bad about
either advertisement or search or about the direction of flow between any two
components. It is a choice parameter in middleware that is not often discussed.

UPnP

Jini

serviceclient

lookup
service

client
service

Fig. 3. Directionality of information flow

3.3 Service invocation

Many internet protocols specify all components of the protocol. For example,
UPnP specifies the search and discovery protocols and also the protocol for
procedure call interaction between client and service as SOAP. However, as was
shown by Java RMI over Corba’s IIOP instead of JRMP, there is no necessary
link between discovery and invocation. As long as a client and service are using
the same RPC protocol they can interact.

For UPnP and many systems there is little choice since the invocation pro-
tocol is fixed by the middleware specification. However, Jini 2.0 allows a “plug-
gable” communications protocol. While most systems would require the client



to have the communications protocol “hard coded” (or loadable from local files),
Jini allows a service proxy to be downloaded from lookup service to client, and
this can carry code to implement any desired communication protocol.

3.4 Bridging and alternatives

The majority of systems that allow one protocol to talk to another do so via a
bridge at the invocation level. This is a two-sided component that understands
one protocol on one side and the other protocol on the other side. Typically this
runs as an independent module and acts as a client to one protocol and a service
to the other. This is shown in Figure 4, with a service cache manager between
client and service for one middleware. The bridge not only talks both invocation
protocols but also translates in each direction between them. In addition, it
needs to understanda and use the service registration protocol. Examples were
cited earlier.

Bringing hard-coded modules into the client is an alternative that has been
employed by many protocol implementations. For instance, a “CORBA to Java”
converter will allow a Java client to link in IIOP communication modules, while
a “WSDL to Java” converter will allow a similar client to link in SOAP commu-
nication modules. This requires explicit configuration steps on the client side.

However, as discussed in the previous section, downloadable code allows a
client to use a downloaded proxy which talks a “foreign” protocol directly with-
out requiring a translation unit.

As shown in Figure 4, to register a bridge between protocols X and Y, a
bridge registers as a service of type X so that the client of type X can locate
it. But as discussed earlier, a service cache manager need not be limited to a
symmetric protocol, and could easily use multiple protocols. In particular, these
protocols need not act in the same direction: one side of a service cache manager
could search, the other side announce.

service

manager
cache

service Xclient X client Y service Y

bridge

Fig. 4. Bridging service protocols



4 Proposed System

For UPnP, the format of messages and communication protocols are fixed and
there is no service cache manager. For Jini, the protocol to locate a lookup service
and download a proxy for it is fixed. The protocol is symmetric with respect to
clients and services: they both use the same protocol to get the same type of
proxy.

We propose a two-sided lookup service that acts between two protocols. How-
ever, unlike the bridges discussed earlier which act between the two invocation
protocols, our two-sided lookup service acts between the discovery and announce-
ment mechanisms. That is, one side finds services by announcements or listening
for adverts using the service discovery protocol. The other side can be found by
clients using adverts or listening using the client discovery protocol. In other
words, our proposal is for a bridging service cache manager.

In our particular study, the bridging lookup service listens for UPnP device
advertisements on one side. It can handle device registration and device farewells
and will deal with device renewals, timing out if they are not received. In this
respect it acts like a UPnP control point, but unlike a control point it does not
send any action calls to the UPnP device or register itself for events.

The other side of the bridging lookup service handles requests from Jini
clients, primarily a discovery request for the lookup service. This is shown in
Figure 5.

lookup
service

bridge

UPnP
service

Jini
client

Fig. 5. Bridging discovery protocols

The lookup service will act like a normal Jini lookup service as far as the
Jini client is concerned and return a lookup service proxy. The Jini client will
be a normal Jini client and uses the lookup service to search for a service using
the standard Jini API. If the lookup service knows of UPnP devices that deliver
the service, it will prepare a proxy for the UPnP device and send it back to the
Jini client.

The lookup service will need to return a Java object to the client that im-
plements the service interface. Ordinary Java method calls will be made on this
proxy. However, the invocation protocol used by the proxy object is not spec-
ified by the interface, nor by Jini, and can be any suitable protocol. We have
designed our proxies to use the SOAP protocol so that they can talk directly to



the UPnP service, instead of the JRMP protocol used to talk to RMI services.
The resulting system is shown in Figure 6.

client proxy
listener

LUS
service proxy

client
LUS proxy

NOTIFY event
SOAP reply
SOAP requestservice proxy UPnP

service

Fig. 6. Jini/UPnP Lookup Service

5 Implementation

There is an open source implementation of UPnP devices and control points
by CyberGarage [12]. This is very closely modelled on the UPnP Device Ar-
chitecture specification [8]. It exposes an API to allow a client to create a
ControlPoint which can listen for device announcements, to determine the ser-
vices within the device and it has methods to prepare parameters and make
action calls on UPnP services. It also supports getting device information such
as friendly name and registering as listener for state variable change events.

We use this in our lookup service to monitor UPnP devices and keep track
of the services that are available, as well as device information.

The CyberGarage API does not treat UPnP devices and services in the
service-oriented manner of Jini, RMI, CORBA or even Web Services. These
specify single services using an IDL (interface definition language) of some form.
We have defined a mapping from UPnP device and service specifications into
Java interfaces. For example, the Switch Power service within a BinaryLight
device is transformed into the Java interface

public interface SwitchPower extends Remote {

void SetTarget(Target newTargetValue)

throws RemoteException;

void GetTarget(TargetHolder RetTargetValue)

throws RemoteException;

void GetStatus(StatusHolder ResultStatus)

throws RemoteException;

}



The lookup service examines the UPnP device and service descriptions and
extracts the UPnP service names and other information (such as friendly name).
It stores this information along with the device URL.

In general, a Jini service may implement a number of service interfaces, and
a Jini client may request a service that simultaneously implements a number of
interfaces (although in practise a service usually only implements one interface
and a client only requests one). UPnP devices usually only have one service
although some may have more. For example, an internet gateway device may
have several services and embedded devices. This device has a total service list
of Layer3Forwarding, WANCommonInterfaceConfig, WANDSLLinkConfig and
WANPPPConnection.

In our implemention, we use the Java class Proxy to give a dynamic proxy.
This proxy implements all of the services on a single UPnP device. The proxy is
supplied with the device URL so that it can access the device description. This
description contains the URLs for action calls, for registering listeners and for
the presentation.

The proxy implementation also uses the CyberGarage library, but only for
the control components of the CyberGarage ControlPoint. That is, it is used to
prepare and make SOAP action calls and to register and listen for UPnP events.
However, it does not listen for devices, since that is done by the bridging lookup
service. When a method call is made on the service proxy it uses the control
point to make a SOAP remote procedure call.

6 Assessment

6.1 Implementation

Our current implementation relies heavily on the CyberGarage library, but only
on the control point code. The device advertisement code is not used. Only a part
of the control point code is used by the bridging lookup service to monitor devices
while another part is used by the service proxy to make action calls and listen
for events. However, the CyberGarage code is tightly interwoven, and it was not
possible to use only the relevant parts. The lookup service has to import almost
all of the library, as does the service proxy. It should be possible to produce a
lighter-weight version for each with only the required partial functionality.

The lookup service can run with full knowledge of the classes it needs. In
particular, the CyberGarage classes can be in its classpath. A Jini client cannot
be expected to have such classes available, so the service proxy will have to
download them using the standard Jini dynamic class loading as a jar file. This
means accessing an HTTP server with the CyberGarage files and loading the
classes from there. These classes are 270kbytes in size. However, the jar file also
contains the source code for the package. Removing these reduces the size to
160kbytes and a specialised version could be even smaller.

CyberGarage also requires an XML parser to interpret SOAP responses. The
default parser (Xerces) and associated XML API package are over 1Mbyte in



size which is substantial for an HTTP download. The kXML package can be
used instead, and this is a much more reasonable 20kbytes and there is even a
light version of this.

Nevertheless, a total of 180kbytes for downloadable code is acceptable: the
reference implementation of Sun’s lookup service takes 50kbytes, for example.
The client will then have the additional code of a UPnP control point, which
isnot onerous.

6.2 Standardisation

A UPnP device and its services is defined by an XML document, similar in
intent to WSDL for Web Services [11] but much more straightforward and better
designed. The UPnP Consortium is in charge of defining standard devices and
services.

There are now enough service-oriented bindings to Java to consider standar-
dising a binding of Java to UPnP descriptions. The UPnP documents defining
meta-device and service architecture and individual specifications can be found
on the UPnP Web site [1]. Although both UPnP and Web Services use SOAP,
the UPnP specification and WSDL differ, so it is not just a simple matter of
using WSDL to Java conversions.

Each middleware system has a set of datatypes, and these are not the same
in all systems. Consequently any bridging mechanism has to cope with mapping
between types. For example, UPnP (like Corba and Web Services) has unsigned
integer types which are not present in Java. Unfortunately, Corba and Web
Services already use different incompatable classes to represent these, so a single
cross-middleware solution seems unlikely. We have devised a set of Java types
for UPnP types, such as UByte, which do not carry the “baggage” of the Corba
or Web Service types.

The parameters in UPnP action calls are unusual in that they specify type
information by indirection: a parameter is associated with a state variable, and
this has a type. While the base type of a state variable is one of the UPnP
primitive types, in some cases they may be qualified. For example, the state
variable PhysicalLinkStatus in the WANCommonInterfaceConfig service has
base type of string but is limited to a set of values “Up”, “Down”, “Initializing”
and “Unavailable”. In order to handle such cases, a type is defined for each state
variable which contains a base type such as String or the UPnP defined types
UByte. In addition such types may have a final static field of “allowed values”
such as an array of possible string values.

UPnP action parameters may be in or out. While Corba and Web Services
define “holder” classes for out parameters, again these are not quite appropriate
for UPnP and an additional set of holder classes needs to be defined for each
service.

Using these datatype mappings and appropriate name-mangling from UPnP
conventions to Java conventions we have defined a mapping from UPnP services
to Java interfaces. These conform to the IDL model used in many middleware



specification rather than the model used by CyberGarage, even though the cur-
rent implementation uses the CyberGarage classes.

In addition, we have defined a subclass of the Jini Entry class to contain
all of the UPnP device information such as manufacturer name, manufacturer
URL, etc. This is a Jini-specific class, that loosely corresponds to the type of
information that is stored in UDDI yellow and green pages. We have also de-
fined a mechanism for registering event listeners, but again this is a Jini-specific
mechanism.

The proposal is under discussion in the Jini mailing list. Once agreed, this
should be of value not only to this project but to other UPnP/Jini systems.

6.3 Generality

The design pattern discussed in this paper relies on a number of properties of
the two middleware systems in order to be applicable

– it must be possible for a service cache manager to be used in each middleware
system. In practise this is not an onerous provision and it can be applied
even to systems such as UPnP which do not require an SCM.

– There must be a (sufficiently good) mapping of the datatypes from service
system to client system. This allows UPnP services to be called from Jini
clients, but would limit the scope of Jini services that could be invoked by
UPnP clients. As another example, the flexibility of XMl data-types means
that it should be possible to mix Jini clients with Web Services, and Jini
services with Web Service clients.

– It must be possible to download code from the SCM to run in either the
client or service. In our case study, we have downloaded code to the client
that understands the service invocation protocol, but it would work equally
well if code could be downloaded to the service that understands the client
invocation protocol. Without this, the recipient would already need to know
how to deal with a foreign invocation protocol, which would partly defeat
the value of the pattern.

The third point is the most difficult to realise in practise, since the only major
language supporting dynamic downloads of code across a network appears to be
Java, and the principal middleware system using this is Jini. However, there are
many programming languages which support late and dynamic binding of code,
such as C#, Python and even C++. These languages could also support remote
code if the class loading mechanism was made “network aware” as in Java’s
RMI.

7 Value of work

Jini has suffered by a lack of standards work for Jini devices and device services,
with a corresponding lack of actual devices. This work allows Jini to “piggyback”
on the work done now and in the future by the UPnP Consortium and to bring a



range of standardised devices into the Jini environment. Jini clients will be able
to invoke UPnP services in addition to services specifically designed for Jini.

UPnP is a device-centric service architecture. It allows clients to use services
on devices, but has no mechanism for UPnP clients to deal with software-only
services since they cannot be readily expressed in UPnP. Jini clients on the other
hand are agnostic to any hardware or software base, and can mix services of any
type.

Both middleware systems have limitations - in the case of Jini, in the types of
services that can be accessed, and in the case of UPnP, in the range of services
that can be offered. Other middleware systems will have similar limitations.
For example, Web Services tend to deal with long-lived services at well-known
addresses whereas Jini can handle transient services.

The value of mixing different middleware systems can be seen by a simple
example. Through UPnP, various devices such as hardware-based clocks and
alarms can be managed. A stock exchange service may be available as a Web
Service. A calendar and diary service may be implemented purely in software as
a Jini service. Using the techniques described in this paper, a Jini client could
access all of these. Acting on events from UPnP clocks to trigger actions from
the Jini diary the client could query the Web Service stock exchange service and
ring UPnP alarms if the value of the owner’s shares has collapsed.

8 Conclusion

We have proposed an alternative architecture to an invocation bridge between
different middleware systems which uses a service cache bridge and a download-
able proxy understanding the service or client invocation protocol. In addition,
we have used this between Jini and UPnP and we have automated the genera-
tion and runtime behaviour of this proxy from a UPnP specification. This has
been demonstrated to give a simple solution for UPnP services and Jini clients.
The technique is applicable to any client protocol which supports downloadable
code and any service protocol. For example, it could be applied to a Jini/Web
Service system.

References

1. UPnP Forum, “UPnP Home Page”, http://www.upnp.org.
2. J Waldo “An Architecture for Service Oriented Architectures”

http://www.jini.org/events/0505NYSIG/WaldoNYCJUG.pdf
3. K. Arnold, et al, The Jini Specification, 2 nd ed., Reading, Mass.: Addison-Wesley,

2001.
4. WWW Consortium, Web Services Home Page, http://www.w3.org/2002/ws/
5. UPnP, “UPnP Device Architecture”, http://www.upnp.org/resources/documents/.
6. J. Newmarch, “A Programmers Guide to Jini”, APress, 2000.
7. J Newmarch “ UPnP Services and Jini Clients “ ISNG 2005, Las Vegas
8. UPnP Consortium “UPnP Device Architecture” http://www.upnp.org’
9. WWW Consortium, “SOAP 1.2 Protocol,” http://www.w3.org/TR/soap12.

10. “Eight Jini Community Forum”, http://www.jini.org/nonav/meetings/eighth/J8abstracts.html,
London 2005



11. WSDL 1.0 Specification, http://http://www.ibm.com/developerworks/web/library/w-
wsdl.html

12. S. Konno, “Cyberlink for java” http://www.cybergarage.org/net/upnp/java/index.html.
13. C. Dabrowski and K. Mills “Analyzing Properties and Behavior of Service Discov-

ery Protocols using an Architecture-based Approach” Proc. Working Conference
on Complex and Dynamic Systems Architecture, 2001

14. J. Allard, V. Chinta, S. Gundala, G. G. Richard III, ”Jini Meets UPnP: An Ar-
chitecture for Jini/UPnP Interoperability,” Proceedings of the 2003 International
Symposium on Applications and the Internet (SAINT 2003)


